cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345591 Numbers that are the sum of nine fourth powers in seven or more ways.

Original entry on oeis.org

6739, 6804, 6854, 6869, 6979, 7029, 7044, 7094, 7109, 7269, 7284, 7844, 7909, 7939, 8004, 8019, 8084, 8149, 8194, 8244, 8259, 8309, 8324, 8389, 8434, 8499, 8564, 8628, 8739, 8868, 8979, 9044, 9059, 9124, 9189, 9219, 9234, 9254, 9284, 9299, 9364, 9414, 9429
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6804 is a term because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345615 Numbers that are the sum of eight fifth powers in seven or more ways.

Original entry on oeis.org

4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8625619, 8658144, 8710484, 8742208, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9773236, 9904983, 9976120, 10036233, 10045233, 10053008
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345623 Numbers that are the sum of nine fifth powers in six or more ways.

Original entry on oeis.org

926404, 936607, 952896, 985421, 993574, 993605, 993816, 1075779, 1123321, 1133344, 1134367, 1151406, 1160105, 1166111, 1177144, 1206514, 1209669, 1209847, 1215545, 1225630, 1251130, 1264929, 1265320, 1278611, 1414834, 1422367, 1422609, 1430384, 1431367
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			936607 is a term because 936607 = 1^5 + 1^5 + 2^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 4^5 + 4^5 + 4^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345625 Numbers that are the sum of nine fifth powers in eight or more ways.

Original entry on oeis.org

1431398, 1431640, 1531397, 1952415, 1969221, 2247917, 2530399, 2596936, 2652563, 2652860, 2736790, 2851254, 2965588, 3088909, 3148674, 3273590, 3297416, 3329120, 3329362, 3332244, 3336895, 3345442, 3345653, 3353186, 3361614, 3362217, 3364738, 3378178, 3553641
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1431640 is a term because 1431640 = 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A346342 Numbers that are the sum of nine fifth powers in exactly seven ways.

Original entry on oeis.org

1431429, 1439173, 1447570, 1504636, 1597929, 1671167, 1696159, 1697686, 1697928, 1778835, 1936454, 1975049, 2017344, 2092122, 2182161, 2198967, 2208680, 2280818, 2283911, 2289343, 2314335, 2329845, 2340319, 2345806, 2362370, 2388651, 2497771, 2529407, 2530672
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345624 at term 1 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.

Examples

			1431398 is a term because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345639 Numbers that are the sum of ten fifth powers in seven or more ways.

Original entry on oeis.org

555098, 674040, 683166, 707315, 763631, 777852, 778844, 780945, 783224, 893654, 896500, 897668, 920887, 926616, 927819, 928802, 936850, 937631, 944383, 945017, 952897, 953077, 953139, 953350, 953414, 955178, 963131, 975133, 979482, 984133, 985453, 985664
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			674040 is a term because 674040 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 7^5 + 9^5 + 10^5 + 12^5 + 12^5 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 = 1^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 = 1^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 = 2^5 + 2^5 + 2^5 + 2^5 + 4^5 + 6^5 + 8^5 + 10^5 + 11^5 + 13^5 = 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 6^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 8^5 + 12^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.