A345839
Numbers that are the sum of eight fourth powers in exactly seven ways.
Original entry on oeis.org
8003, 8243, 9043, 9218, 9283, 9523, 10372, 10803, 10868, 10948, 11043, 11412, 11557, 11587, 12083, 12692, 12932, 13188, 13333, 13508, 13972, 14147, 14387, 14883, 14933, 14948, 14963, 15013, 15028, 15093, 15173, 15268, 15317, 15332, 15397, 15412, 15413, 15492
Offset: 1
8243 is a term because 8243 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A345615
Numbers that are the sum of eight fifth powers in seven or more ways.
Original entry on oeis.org
4104553, 4915506, 6011150, 6027989, 6323394, 6563733, 6622231, 6776363, 6785394, 7982834, 8181481, 8288806, 8625619, 8658144, 8710484, 8742208, 8773477, 8932244, 8996669, 9252219, 9253706, 9311478, 9773236, 9904983, 9976120, 10036233, 10045233, 10053008
Offset: 1
4915506 is a term because 4915506 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 15^5 + 21^5 = 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A346284
Numbers that are the sum of seven fifth powers in exactly seven ways.
Original entry on oeis.org
28608832, 35663099, 36090526, 46998599, 51095638, 52541851, 54233651, 54827543, 54886349, 61263643, 61634374, 63514593, 64810976, 65198607, 66708676, 67887843, 70979107, 72970305, 74002457, 74115801, 74132607, 74487093, 75044651, 75378359, 75612250, 75997624
Offset: 1
28608832 is a term because 28608832 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 24^5 + 29^5 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 24^5 + 28^5 = 6^5 + 6^5 + 14^5 + 14^5 + 22^5 + 22^5 + 28^5 = 7^5 + 8^5 + 13^5 + 14^5 + 17^5 + 26^5 + 27^5 = 2^5 + 8^5 + 11^5 + 19^5 + 22^5 + 23^5 + 27^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 24^5 + 25^5 + 25^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A346331
Numbers that are the sum of eight fifth powers in exactly six ways.
Original entry on oeis.org
1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4970823, 5003645, 5112274, 5259111, 5449985, 5523925, 5722189
Offset: 1
1431397 is a term because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
A346333
Numbers that are the sum of eight fifth powers in exactly eight ways.
Original entry on oeis.org
8625619, 9773236, 10036233, 10071050, 12247994, 13180706, 13377868, 13662501, 14584992, 14591744, 14611077, 15251119, 16112362, 16374250, 16391025, 16472544, 16588000, 16667851, 17059075, 17216298, 17405300, 17917097, 18107564, 18392902, 18470839, 18541635
Offset: 1
8625619 is a term because 8625619 = 2^5 + 5^5 + 5^5 + 9^5 + 10^5 + 12^5 + 12^5 + 24^5 = 1^5 + 3^5 + 8^5 + 9^5 + 11^5 + 11^5 + 12^5 + 24^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 16^5 + 23^5 = 1^5 + 3^5 + 3^5 + 4^5 + 11^5 + 17^5 + 18^5 + 22^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 16^5 + 22^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 16^5 + 19^5 + 20^5 = 3^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 18^5 + 20^5 = 3^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 18^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A346342
Numbers that are the sum of nine fifth powers in exactly seven ways.
Original entry on oeis.org
1431429, 1439173, 1447570, 1504636, 1597929, 1671167, 1696159, 1697686, 1697928, 1778835, 1936454, 1975049, 2017344, 2092122, 2182161, 2198967, 2208680, 2280818, 2283911, 2289343, 2314335, 2329845, 2340319, 2345806, 2362370, 2388651, 2497771, 2529407, 2530672
Offset: 1
1431398 is a term because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments