A345575
Numbers that are the sum of seven fourth powers in nine or more ways.
Original entry on oeis.org
19491, 21267, 21332, 23652, 31251, 35427, 36052, 37812, 38067, 39891, 40356, 41732, 41747, 43267, 43876, 43891, 43956, 44131, 44196, 44532, 44547, 44612, 45156, 45171, 45411, 45651, 45652, 45827, 45891, 45892, 45907, 46276, 46451, 46516, 47427, 47667, 47971
Offset: 1
21267 is a term because 21267 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 2^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 11^4 = 3^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A345630
Numbers that are the sum of seven fifth powers in eight or more ways.
Original entry on oeis.org
36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 110276376, 121050874, 124732805, 125959393, 127808693, 129228307, 130298618, 134581976, 144209018, 145340799, 147245218, 147898763, 151727082
Offset: 1
80552143 is a term because 80552143 = 1^5 + 4^5 + 21^5 + 21^5 + 23^5 + 29^5 + 34^5 = 1^5 + 8^5 + 14^5 + 23^5 + 23^5 + 32^5 + 32^5 = 1^5 + 8^5 + 16^5 + 19^5 + 27^5 + 28^5 + 34^5 = 3^5 + 12^5 + 13^5 + 14^5 + 28^5 + 31^5 + 32^5 = 3^5 + 14^5 + 17^5 + 18^5 + 18^5 + 27^5 + 36^5 = 4^5 + 11^5 + 13^5 + 22^5 + 23^5 + 24^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 23^5 + 24^5 + 36^5 = 6^5 + 23^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A346286
Numbers that are the sum of seven fifth powers in exactly nine ways.
Original entry on oeis.org
110276376, 124732805, 127808693, 130298618, 188116743, 202274051, 202686274, 203343582, 230909843, 233137574, 233549568, 234250752, 244250335, 251138524, 253480833, 254017026, 254380543, 265006057, 265072501, 273628068, 279536432, 279770326, 280361082
Offset: 1
110276376 is a term because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 9])
for x in range(len(rets)):
print(rets[x])
A345617
Numbers that are the sum of eight fifth powers in nine or more ways.
Original entry on oeis.org
8742208, 15539667, 18913169, 19987308, 20135313, 21505583, 21512966, 21563089, 21727552, 22237510, 22256608, 22438990, 22545600, 22686818, 22932525, 23106589, 23122550, 23189782, 23221517, 23287858, 23346048, 23477344, 23798742, 23847285, 23931325, 24138358
Offset: 1
15539667 is a term because 15539667 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A345643
Numbers that are the sum of seven fifth powers in ten or more ways.
Original entry on oeis.org
134581976, 189642309, 219063107, 235438301, 252277376, 275782407, 281935070, 290928076, 300919884, 308188849, 309631268, 315635200, 322947868, 327287951, 335530174, 342030094, 358852218, 361946949, 379913293, 384699424, 387538625, 391133568
Offset: 1
189642309 is a term because 189642309 = 1^5 + 1^5 + 2^5 + 19^5 + 30^5 + 36^5 + 40^5 = 1^5 + 2^5 + 6^5 + 7^5 + 18^5 + 20^5 + 45^5 = 1^5 + 6^5 + 21^5 + 27^5 + 29^5 + 36^5 + 39^5 = 2^5 + 9^5 + 19^5 + 23^5 + 33^5 + 33^5 + 40^5 = 3^5 + 4^5 + 21^5 + 28^5 + 29^5 + 34^5 + 40^5 = 6^5 + 7^5 + 11^5 + 29^5 + 33^5 + 36^5 + 37^5 = 7^5 + 12^5 + 17^5 + 20^5 + 29^5 + 32^5 + 42^5 = 8^5 + 11^5 + 21^5 + 21^5 + 22^5 + 34^5 + 42^5 = 13^5 + 14^5 + 14^5 + 19^5 + 21^5 + 38^5 + 40^5 = 20^5 + 21^5 + 24^5 + 24^5 + 24^5 + 38^5 + 38^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A345723
Numbers that are the sum of six fifth powers in nine or more ways.
Original entry on oeis.org
9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 55302546200, 56229189632, 57088402525, 59954496800, 63432407850
Offset: 1
16933805856 = 2^5 + 38^5 + 68^5 + 74^5 + 92^5 + 92^5
= 2^5 + 54^5 + 58^5 + 64^5 + 92^5 + 96^5
= 14^5 + 36^5 + 61^5 + 67^5 + 94^5 + 94^5
= 15^5 + 49^5 + 52^5 + 60^5 + 94^5 + 96^5
= 17^5 + 49^5 + 53^5 + 57^5 + 92^5 + 98^5
= 29^5 + 36^5 + 42^5 + 72^5 + 88^5 + 99^5
= 31^5 + 36^5 + 54^5 + 54^5 + 94^5 + 97^5
= 34^5 + 34^5 + 46^5 + 72^5 + 76^5 + 104^5
= 35^5 + 36^5 + 69^5 + 72^5 + 89^5 + 95^5
so 16933805856 is a term.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments