A345820
Numbers that are the sum of six fourth powers in exactly eight ways.
Original entry on oeis.org
58035, 59780, 87746, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 124691, 125971, 133395, 133571, 133586, 134675, 136931, 138275, 138595, 143650, 144755, 145826, 147491, 148820, 149571, 150115
Offset: 1
59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A346285
Numbers that are the sum of seven fifth powers in exactly eight ways.
Original entry on oeis.org
36620574, 80552143, 81401376, 82078424, 92347417, 93653176, 94486699, 94626949, 98873875, 105674625, 121050874, 125959393, 129228307, 144209018, 145340799, 147245218, 147898763, 151727082, 151923168, 152361276, 152664876, 153877208, 155107349, 155270357
Offset: 1
36620574 is a term because 36620574 = 4^5 + 9^5 + 14^5 + 17^5 + 18^5 + 21^5 + 31^5 = 1^5 + 12^5 + 13^5 + 14^5 + 20^5 + 24^5 + 30^5 = 8^5 + 9^5 + 12^5 + 13^5 + 16^5 + 27^5 + 29^5 = 5^5 + 7^5 + 7^5 + 20^5 + 23^5 + 23^5 + 29^5 = 17^5 + 18^5 + 20^5 + 20^5 + 20^5 + 20^5 + 29^5 = 2^5 + 7^5 + 14^5 + 14^5 + 23^5 + 26^5 + 28^5 = 4^5 + 8^5 + 8^5 + 17^5 + 23^5 + 27^5 + 27^5 = 2^5 + 3^5 + 14^5 + 18^5 + 24^5 + 26^5 + 27^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A345722
Numbers that are the sum of six fifth powers in eight or more ways.
Original entry on oeis.org
2295937600, 4335900525, 6251954544, 8986552608, 9085584992, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 16933805856, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300
Offset: 1
4335900525 is a term because 4335900525 = 2^5 + 24^5 + 34^5 + 56^5 + 61^5 + 78^5 = 3^5 + 21^5 + 37^5 + 54^5 + 62^5 + 78^5 = 3^5 + 21^5 + 39^5 + 49^5 + 66^5 + 77^5 = 3^5 + 26^5 + 32^5 + 49^5 + 72^5 + 73^5 = 8^5 + 16^5 + 42^5 + 49^5 + 61^5 + 79^5 = 9^5 + 13^5 + 43^5 + 47^5 + 66^5 + 77^5 = 19^5 + 20^5 + 30^5 + 45^5 + 61^5 + 80^5 = 21^5 + 24^5 + 28^5 + 37^5 + 67^5 + 78^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A346362
Numbers that are the sum of six fifth powers in exactly seven ways.
Original entry on oeis.org
1184966816, 1700336000, 1717860100, 1972000800, 2229475325, 2396275200, 2548597632, 2625460992, 2886251808, 3217068800, 3697267200, 3729261536, 3765398725, 4046532448, 4165116967, 4246566632, 4286704224, 4489548050, 4539955200, 4623694108, 4710031469
Offset: 1
1184966816 is a term because 1184966816 = 15^5 + 24^5 + 27^5 + 38^5 + 39^5 + 63^5 = 2^5 + 28^5 + 36^5 + 36^5 + 42^5 + 62^5 = 4^5 + 24^5 + 38^5 + 38^5 + 40^5 + 62^5 = 21^5 + 32^5 + 37^5 + 41^5 + 45^5 + 60^5 = 8^5 + 14^5 + 34^5 + 40^5 + 52^5 + 58^5 = 11^5 + 17^5 + 22^5 + 49^5 + 51^5 + 56^5 = 11^5 + 16^5 + 22^5 + 52^5 + 52^5 + 53^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A346364
Numbers that are the sum of six fifth powers in exactly nine ways.
Original entry on oeis.org
9085584992, 16933805856, 37377003050, 39254220544, 41066625600, 41485873792, 42149876800, 43828403850, 44180505600, 45902654525, 48588434400, 52005184992, 53536896864, 54156285568, 56229189632, 57088402525, 59954496800, 63432407850, 66188522400, 66507304800
Offset: 1
9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
= 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
= 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
= 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
= 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
= 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
= 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
= 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
= 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is a term.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 9])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments