cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345565 Numbers that are the sum of six fourth powers in eight or more ways.

Original entry on oeis.org

58035, 59780, 87746, 88595, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 122915, 124691, 125971, 132546, 133395, 133571, 133586, 134675, 134931, 136931, 138275, 138595, 143650, 144755, 144835
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345819 Numbers that are the sum of six fourth powers in exactly seven ways.

Original entry on oeis.org

21251, 43875, 48276, 49796, 53315, 58500, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 88355, 88660, 88675, 90355, 91475, 93410, 93650, 94690, 95155
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345564 at term 6 because 58035 = 1^4 + 1^4 + 9^4 + 10^4 + 12^4 + 12^4 = 1^4 + 4^4 + 5^4 + 8^4 + 11^4 + 14^4 = 1^4 + 5^4 + 6^4 + 11^4 + 12^4 + 12^4 = 2^4 + 2^4 + 4^4 + 5^4 + 13^4 + 13^4 = 2^4 + 6^4 + 6^4 + 7^4 + 7^4 + 15^4 = 2^4 + 8^4 + 10^4 + 11^4 + 11^4 + 11^4 = 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 15^4 = 4^4 + 5^4 + 6^4 + 9^4 + 12^4 + 13^4.

Examples

			43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345821 Numbers that are the sum of six fourth powers in exactly nine ways.

Original entry on oeis.org

88595, 132546, 134931, 144835, 146450, 162355, 170275, 171555, 171795, 172036, 172835, 177380, 177716, 180770, 183540, 184835, 185555, 187700, 187715, 190100, 190211, 193635, 195380, 195780, 196435, 197780, 199075, 199475, 199730, 199955, 202196, 202980
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345566 at term 2 because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.

Examples

			122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345830 Numbers that are the sum of seven fourth powers in exactly eight ways.

Original entry on oeis.org

21252, 21507, 21636, 21876, 25347, 30372, 31412, 31652, 32116, 32356, 33811, 33907, 35637, 35652, 35892, 36261, 37827, 38052, 38596, 38676, 39267, 39347, 39971, 39972, 40212, 40452, 41506, 41731, 41987, 42147, 42227, 42357, 42532, 42771, 42852, 43027, 43282
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345574 at term 1 because 19491 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 8^4 + 10^4 = 1^4 + 2^4 + 4^4 + 4^4 + 7^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 8^4 + 11^4 = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 11^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 8^4 + 10^4 = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 11^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.

Examples

			21252 is a term because 21252 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 1^4 + 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4 = 3^4 + 4^4 + 6^4 + 7^4 + 8^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A344945 Numbers that are the sum of five fourth powers in exactly eight ways.

Original entry on oeis.org

534130, 654754, 663155, 729219, 737459, 742770, 758354, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 1009954, 1055619, 1083955, 1099459, 1101859, 1103554, 1106019, 1157634, 1167794, 1180003, 1215394, 1217539, 1246354, 1253074, 1255539, 1278690
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344944 at term 2 because 619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4 = 1^4 + 3^4 + 4^4 + 8^4 + 28^4 = 1^4 + 11^4 + 14^4 + 22^4 + 24^4 = 2^4 + 2^4 + 8^4 + 17^4 + 27^4 = 2^4 + 13^4 + 13^4 + 18^4 + 26^4 = 3^4 + 6^4 + 12^4 + 16^4 + 27^4 = 4^4 + 12^4 + 14^4 + 23^4 + 23^4 = 9^4 + 12^4 + 16^4 + 21^4 + 24^4 = 14^4 + 16^4 + 18^4 + 19^4 + 23^4.

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345770 Numbers that are the sum of six cubes in exactly eight ways.

Original entry on oeis.org

1981, 2105, 2168, 2277, 2368, 2376, 2431, 2466, 2538, 2557, 2583, 2646, 2665, 2672, 2746, 2753, 2763, 2765, 2880, 2881, 2916, 2961, 2970, 2977, 2979, 2987, 3007, 3040, 3042, 3049, 3068, 3088, 3141, 3159, 3169, 3185, 3248, 3278, 3311, 3312, 3367, 3384, 3393
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345517 at term 8 because 2438 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 13^3 = 1^3 + 2^3 + 4^3 + 5^3 + 8^3 + 12^3 = 1^3 + 5^3 + 5^3 + 9^3 + 9^3 + 9^3 = 2^3 + 2^3 + 2^3 + 7^3 + 7^3 + 12^3 = 2^3 + 2^3 + 3^3 + 4^3 + 10^3 + 11^3 = 2^3 + 3^3 + 6^3 + 9^3 + 9^3 + 9^3 = 2^3 + 4^3 + 5^3 + 8^3 + 9^3 + 10^3 = 4^3 + 4^3 + 5^3 + 5^3 + 9^3 + 11^3 = 6^3 + 7^3 + 7^3 + 8^3 + 8^3 + 8^3.

Examples

			2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A346363 Numbers that are the sum of six fifth powers in exactly eight ways.

Original entry on oeis.org

2295937600, 4335900525, 6251954544, 8986552608, 13413708308, 14539246326, 15277569450, 15728636000, 16770321920, 16873011232, 17572402769, 17713454592, 17960776999, 18190647200, 19621666592, 20570070125, 20827689300, 22322555200, 23461554774, 23613244800
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

This sequence differs from A345722:
9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
= 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
= 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
= 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
= 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
= 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
= 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
= 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
= 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
so 9085584992 is in A345722, but is not in this sequence.

Examples

			2295937600 =  4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5
           =  8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5
           =  8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5
           = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5
           =  3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5
           =  4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5
           = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5
           =  1^5 +  7^5 + 34^5 + 57^5 + 58^5 + 63^5,
so 2295937600 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.