cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345564 Numbers that are the sum of six fourth powers in seven or more ways.

Original entry on oeis.org

21251, 43875, 48276, 49796, 53315, 58035, 58500, 59780, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 87746, 88355, 88595, 88660, 88675, 90355, 91475
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A345818 Numbers that are the sum of six fourth powers in exactly six ways.

Original entry on oeis.org

37811, 38051, 43251, 43571, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 49971, 52195, 53235, 54131, 56290, 57395, 57460, 57570, 59075, 59330, 59860, 60035, 62180, 62211, 63971, 66340, 67026, 67635, 67715, 67860, 67940, 68115, 68291, 68484, 69395, 69410
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345563 at term 1 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.

Examples

			37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345820 Numbers that are the sum of six fourth powers in exactly eight ways.

Original entry on oeis.org

58035, 59780, 87746, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 124691, 125971, 133395, 133571, 133586, 134675, 136931, 138275, 138595, 143650, 144755, 145826, 147491, 148820, 149571, 150115
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345565 at term 4 because 88595 = 1^4 + 4^4 + 5^4 + 12^4 + 13^4 + 14^4 = 1^4 + 6^4 + 6^4 + 11^4 + 12^4 + 15^4 = 1^4 + 7^4 + 8^4 + 9^4 + 10^4 + 16^4 = 2^4 + 8^4 + 9^4 + 9^4 + 12^4 + 15^4 = 2^4 + 10^4 + 11^4 + 11^4 + 12^4 + 13^4 = 4^4 + 6^4 + 6^4 + 9^4 + 13^4 + 15^4 = 5^4 + 6^4 + 7^4 + 8^4 + 11^4 + 16^4 = 7^4 + 7^4 + 10^4 + 11^4 + 12^4 + 14^4.

Examples

			59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])

A345829 Numbers that are the sum of seven fourth powers in exactly seven ways.

Original entry on oeis.org

16691, 17347, 17971, 20706, 21956, 22547, 22612, 23156, 23587, 23827, 23892, 24436, 25107, 25427, 25716, 25971, 26051, 27812, 29092, 29187, 29332, 29427, 29442, 29636, 29701, 29716, 29956, 29971, 30036, 30132, 30612, 30981, 30996, 31011, 31316, 31331, 31347
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345573 at term 4 because 19491 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 8^4 + 10^4 = 1^4 + 2^4 + 4^4 + 4^4 + 7^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 8^4 + 11^4 = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 11^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 8^4 + 10^4 = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 11^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.

Examples

			17347 is a term because 17347 = 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A344943 Numbers that are the sum of five fourth powers in exactly seven ways.

Original entry on oeis.org

197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 548994, 564979, 568450, 571539, 602450, 602770, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 666739, 687314, 692754, 692899, 698019, 708499, 716739, 728914, 730914
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344942 at term 10 because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4 = 2^4 + 2^4 + 4^4 + 7^4 + 27^4 = 2^4 + 3^4 + 6^4 + 6^4 + 27^4 = 2^4 + 6^4 + 9^4 + 21^4 + 24^4 = 4^4 + 16^4 + 17^4 + 18^4 + 23^4 = 6^4 + 8^4 + 11^4 + 22^4 + 23^4 = 7^4 + 8^4 + 16^4 + 19^4 + 24^4 = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.

Examples

			197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A345769 Numbers that are the sum of six cubes in exactly seven ways.

Original entry on oeis.org

1710, 1766, 1773, 1988, 2051, 2160, 2196, 2249, 2251, 2259, 2314, 2322, 2349, 2375, 2417, 2424, 2480, 2492, 2513, 2520, 2531, 2539, 2548, 2564, 2565, 2574, 2611, 2613, 2639, 2656, 2702, 2707, 2762, 2770, 2773, 2792, 2798, 2808, 2818, 2825, 2826, 2833, 2844
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345516 at term 4 because 1981 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 12^3 = 1^3 + 1^3 + 2^3 + 3^3 + 6^3 + 12^3 = 1^3 + 1^3 + 5^3 + 5^3 + 9^3 + 10^3 = 1^3 + 1^3 + 6^3 + 6^3 + 6^3 + 11^3 = 1^3 + 2^3 + 3^3 + 6^3 + 9^3 + 10^3 = 3^3 + 3^3 + 7^3 + 7^3 + 8^3 + 9^3 = 3^3 + 4^3 + 6^3 + 6^3 + 9^3 + 9^3 = 4^3 + 4^3 + 5^3 + 6^3 + 8^3 + 10^3.

Examples

			1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A346362 Numbers that are the sum of six fifth powers in exactly seven ways.

Original entry on oeis.org

1184966816, 1700336000, 1717860100, 1972000800, 2229475325, 2396275200, 2548597632, 2625460992, 2886251808, 3217068800, 3697267200, 3729261536, 3765398725, 4046532448, 4165116967, 4246566632, 4286704224, 4489548050, 4539955200, 4623694108, 4710031469
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345721 at term 6 because 2295937600 = 4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5 = 8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5 = 8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5 = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5 = 3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5 = 4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5 = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5 = 1^5 + 7^5 + 34^5 + 57^5 + 58^5 + 63^5.

Examples

			1184966816 is a term because 1184966816 = 15^5 + 24^5 + 27^5 + 38^5 + 39^5 + 63^5 = 2^5 + 28^5 + 36^5 + 36^5 + 42^5 + 62^5 = 4^5 + 24^5 + 38^5 + 38^5 + 40^5 + 62^5 = 21^5 + 32^5 + 37^5 + 41^5 + 45^5 + 60^5 = 8^5 + 14^5 + 34^5 + 40^5 + 52^5 + 58^5 = 11^5 + 17^5 + 22^5 + 49^5 + 51^5 + 56^5 = 11^5 + 16^5 + 22^5 + 52^5 + 52^5 + 53^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.