A345563 Numbers that are the sum of six fourth powers in six or more ways.
21251, 37811, 38051, 43251, 43571, 43875, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 48276, 49796, 49971, 52195, 53235, 53315, 54131, 56290, 57395, 57460, 57570, 58035, 58500, 59075, 59330, 59780, 59795, 59811, 59860, 60035, 62180, 62211, 63971, 66340
Offset: 1
Keywords
Examples
37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
Programs
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**4 for x in range(1, 1000)] for pos in cwr(power_terms, 6): tot = sum(pos) keep[tot] += 1 rets = sorted([k for k, v in keep.items() if v >= 6]) for x in range(len(rets)): print(rets[x])
Comments