cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A344359 Numbers that are the sum of five fourth powers in exactly five ways.

Original entry on oeis.org

59779, 67859, 93394, 108274, 112850, 136915, 142354, 151475, 161459, 168979, 181219, 183539, 183604, 185299, 187699, 189394, 193379, 195394, 199090, 199474, 200979, 201874, 202979, 203299, 205859, 211330, 212419, 213730, 217810, 217890, 221779, 223090, 223155, 223714, 226514, 227779, 231235
Offset: 1

Views

Author

David Consiglio, Jr., May 15 2021

Keywords

Comments

Differs from A344358 at term 8 because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4 = 3^4 + 11^4 + 11^4 + 14^4 + 17^4 = 3^4 + 13^4 + 13^4 + 13^4 + 16^4 = 6^4 + 9^4 + 9^4 + 9^4 + 19^4 = 7^4 + 11^4 + 11^4 + 11^4 + 18^4 = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.

Examples

			93394 is a term of this sequence because 93394 = 1^4 + 4^4 + 8^4 + 14^4 + 15^4 = 1^4 + 6^4 + 12^4 + 12^4 + 15^4 = 1^4 + 9^4 + 10^4 + 14^4 + 14^4 = 5^4 + 6^4 + 11^4 + 14^4 + 14^4 = 5^4 + 7^4 + 8^4 + 12^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 50)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])

A345562 Numbers that are the sum of six fourth powers in five or more ways.

Original entry on oeis.org

15395, 16610, 18866, 19235, 19410, 20996, 21011, 21251, 21316, 21331, 21491, 21620, 23811, 25091, 29700, 29715, 29906, 29955, 30356, 30995, 31235, 31266, 31331, 31506, 32035, 33651, 33795, 33891, 35171, 35411, 35636, 35796, 35971, 37811, 37971, 38051, 38595
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345816 Numbers that are the sum of six fourth powers in exactly four ways.

Original entry on oeis.org

6626, 6691, 6866, 9251, 9491, 10115, 10706, 10786, 11555, 12595, 14225, 14691, 14771, 15315, 15330, 15570, 16051, 16595, 16660, 16675, 16850, 17090, 17091, 17236, 17316, 17331, 17346, 17860, 17875, 17940, 17955, 18195, 18786, 18851, 19155, 19170, 19475, 19490
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345561 at term 16 because 15395 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4.

Examples

			6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000],Count[PowersRepresentations[#,6,4],?(#[[1]]>0&)]==4&] (* _Harvey P. Dale, Mar 11 2023 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A345818 Numbers that are the sum of six fourth powers in exactly six ways.

Original entry on oeis.org

37811, 38051, 43251, 43571, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 49971, 52195, 53235, 54131, 56290, 57395, 57460, 57570, 59075, 59330, 59860, 60035, 62180, 62211, 63971, 66340, 67026, 67635, 67715, 67860, 67940, 68115, 68291, 68484, 69395, 69410
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345563 at term 1 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.

Examples

			37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345827 Numbers that are the sum of seven fourth powers in exactly five ways.

Original entry on oeis.org

6642, 6707, 6772, 6882, 6947, 7922, 7987, 8227, 8962, 9267, 9507, 9747, 10116, 10291, 10722, 10867, 10932, 10962, 11331, 11411, 11571, 12676, 12851, 12916, 13187, 13252, 13891, 13956, 14131, 14211, 14707, 14772, 14802, 14917, 14932, 14947, 15012, 15092, 15316
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345571 at term 16 because 10787 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4.

Examples

			6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345767 Numbers that are the sum of six cubes in exactly five ways.

Original entry on oeis.org

1045, 1169, 1241, 1260, 1384, 1432, 1440, 1495, 1530, 1539, 1549, 1556, 1558, 1584, 1594, 1602, 1612, 1617, 1640, 1654, 1657, 1675, 1703, 1712, 1715, 1719, 1729, 1736, 1745, 1747, 1754, 1771, 1780, 1792, 1801, 1803, 1806, 1810, 1818, 1825, 1827, 1834, 1843
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345514 at term 5 because 1377 = 1^3 + 1^3 + 2^3 + 7^3 + 8^3 + 8^3 = 1^3 + 1^3 + 5^3 + 5^3 + 5^3 + 10^3 = 1^3 + 2^3 + 3^3 + 5^3 + 6^3 + 10^3 = 1^3 + 6^3 + 6^3 + 6^3 + 6^3 + 8^3 = 3^3 + 3^3 + 5^3 + 7^3 + 7^3 + 8^3 = 3^3 + 4^3 + 5^3 + 6^3 + 6^3 + 9^3.

Examples

			1169 is a term because 1169 = 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 9^3 = 1^3 + 2^3 + 5^3 + 5^3 + 5^3 + 7^3 = 1^3 + 3^3 + 4^3 + 4^3 + 4^3 + 8^3 = 2^3 + 3^3 + 3^3 + 4^3 + 5^3 + 8^3 = 3^3 + 3^3 + 3^3 + 3^3 + 7^3 + 7^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A346360 Numbers that are the sum of six fifth powers in exactly five ways.

Original entry on oeis.org

54827300, 74115800, 74883600, 75609125, 113088250, 120274275, 166078869, 169692136, 174781858, 178736448, 182341225, 185558208, 194939538, 203054589, 218814275, 235067008, 250989825, 251772882, 252721458, 255453233, 258124975, 274616694, 282859667, 287677700
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345719 at term 25 because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.

Examples

			54827300 is a term because 54827300 = 4^5 + 7^5 + 21^5 + 22^5 + 23^5 + 33^5 = 5^5 + 10^5 + 15^5 + 20^5 + 28^5 + 32^5 = 1^5 + 14^5 + 16^5 + 19^5 + 28^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 29^5 + 31^5 = 5^5 + 6^5 + 19^5 + 20^5 + 29^5 + 31^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.