A345817
Numbers that are the sum of six fourth powers in exactly five ways.
Original entry on oeis.org
15395, 16610, 18866, 19235, 19410, 20996, 21011, 21316, 21331, 21491, 21620, 23811, 25091, 29700, 29715, 29906, 29955, 30356, 30995, 31235, 31266, 31331, 31506, 32035, 33651, 33795, 33891, 35171, 35411, 35636, 35796, 35971, 37971, 38595, 38675, 39266, 39890
Offset: 1
16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
A345719
Numbers that are the sum of six fifth powers in five or more ways.
Original entry on oeis.org
54827300, 74115800, 74883600, 75609125, 113088250, 120274275, 166078869, 169692136, 174781858, 178736448, 182341225, 185558208, 194939538, 203054589, 218814275, 235067008, 250989825, 251772882, 252721458, 255453233, 258124975, 274616694, 282859667
Offset: 1
74115800 is a term because 74115800 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
A346257
Numbers that are the sum of five fifth powers in exactly five ways.
Original entry on oeis.org
9006349824, 65799210368, 67629776576, 181085909632, 188189635424, 295677350451, 467139768468, 471359089024, 656243139157, 691381929281, 797466940832, 854533526901, 874953049024, 891862586132, 953769598750, 1038549256768, 1092458681568, 1182658308657
Offset: 1
9006349824 is a term because 9006349824 = 24^5 + 42^5 + 48^5 + 54^5 + 96^5 = 21^5 + 34^5 + 43^5 + 74^5 + 92^5 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5 = 8^5 + 41^5 + 47^5 + 79^5 + 89^5 = 12^5 + 18^5 + 72^5 + 78^5 + 84^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
A346282
Numbers that are the sum of seven fifth powers in exactly five ways.
Original entry on oeis.org
6768576, 6776120, 7883668, 8625376, 8740709, 10036201, 10604054, 12476826, 12618493, 13006575, 13060213, 13080706, 13174250, 13536416, 13550162, 13662500, 14110656, 15169276, 15247994, 16053313, 16060683, 16374218, 16573507, 16600001, 17735057, 17749152
Offset: 1
6768576 is a term because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
A346359
Numbers that are the sum of six fifth powers in exactly four ways.
Original entry on oeis.org
12047994, 20646208, 21017489, 21300963, 21741819, 24993485, 27669050, 28576064, 30193856, 30785920, 35480456, 35735194, 36082750, 37303264, 39035975, 46814942, 47963291, 50047062, 50724345, 52987561, 53076800, 53606848, 55101101, 56766906, 57969327, 58125980
Offset: 1
12047994 is a term because 12047994 = 7^5 + 9^5 + 12^5 + 14^5 + 17^5 + 25^5 = 5^5 + 10^5 + 13^5 + 15^5 + 16^5 + 25^5 = 1^5 + 1^5 + 3^5 + 4^5 + 21^5 + 24^5 = 4^5 + 6^5 + 15^5 + 15^5 + 21^5 + 23^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 4])
for x in range(len(rets)):
print(rets[x])
A346361
Numbers that are the sum of six fifth powers in exactly six ways.
Original entry on oeis.org
287718651, 553545456, 746783675, 972232800, 1005620508, 1040741042, 1070652352, 1074892544, 1182426366, 1197332400, 1243267146, 1317183650, 1364866263, 1387455091, 1429663400, 1498160992, 1529189818, 1554833117, 1558594400, 1610298901, 1623782765, 1627228231
Offset: 1
287718651 is a term because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments