cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345816 Numbers that are the sum of six fourth powers in exactly four ways.

Original entry on oeis.org

6626, 6691, 6866, 9251, 9491, 10115, 10706, 10786, 11555, 12595, 14225, 14691, 14771, 15315, 15330, 15570, 16051, 16595, 16660, 16675, 16850, 17090, 17091, 17236, 17316, 17331, 17346, 17860, 17875, 17940, 17955, 18195, 18786, 18851, 19155, 19170, 19475, 19490
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345561 at term 16 because 15395 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4.

Examples

			6691 is a term because 6691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[20000],Count[PowersRepresentations[#,6,4],?(#[[1]]>0&)]==4&] (* _Harvey P. Dale, Mar 11 2023 *)
  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346358 Numbers that are the sum of six fifth powers in exactly three ways.

Original entry on oeis.org

696467, 893572, 1100264, 1109295, 1165727, 1711776, 2007401, 2025309, 2221767, 2801812, 3047519, 3310494, 3360608, 3550866, 3559556, 3576120, 3807122, 3907101, 4055922, 4093540, 4096114, 4104067, 4123363, 4135578, 4155107, 4195571, 4222339, 4326784, 4417112
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345604 at term 105 because 12047994 = 7^5 + 9^5 + 12^5 + 14^5 + 17^5 + 25^5 = 5^5 + 10^5 + 13^5 + 15^5 + 16^5 + 25^5 = 1^5 + 1^5 + 3^5 + 4^5 + 21^5 + 24^5 = 4^5 + 6^5 + 15^5 + 15^5 + 21^5 + 23^5.

Examples

			696467 is a term because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345718 Numbers that are the sum of six fifth powers in four or more ways.

Original entry on oeis.org

12047994, 20646208, 21017489, 21300963, 21741819, 24993485, 27669050, 28576064, 30193856, 30785920, 35480456, 35735194, 36082750, 37303264, 39035975, 46814942, 47963291, 50047062, 50724345, 52987561, 53076800, 53606848, 54827300, 55101101, 56766906
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			20646208 is a term because 20646208 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 28^5 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 29^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 25^5 + 25^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A346281 Numbers that are the sum of seven fifth powers in exactly four ways.

Original entry on oeis.org

893604, 1117071, 1182534, 1414559, 1629244, 1933328, 2280543, 2586035, 2867074, 3050644, 3055295, 3055977, 3256432, 3329360, 3369543, 3436058, 3551890, 3576363, 3896969, 3914877, 3930849, 4055954, 4087746, 4088690, 4093572, 4096665, 4098161, 4104068, 4104310
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345607 at term 92 because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.

Examples

			893604 is a term because 893604 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346360 Numbers that are the sum of six fifth powers in exactly five ways.

Original entry on oeis.org

54827300, 74115800, 74883600, 75609125, 113088250, 120274275, 166078869, 169692136, 174781858, 178736448, 182341225, 185558208, 194939538, 203054589, 218814275, 235067008, 250989825, 251772882, 252721458, 255453233, 258124975, 274616694, 282859667, 287677700
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345719 at term 25 because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.

Examples

			54827300 is a term because 54827300 = 4^5 + 7^5 + 21^5 + 22^5 + 23^5 + 33^5 = 5^5 + 10^5 + 15^5 + 20^5 + 28^5 + 32^5 = 1^5 + 14^5 + 16^5 + 19^5 + 28^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 29^5 + 31^5 = 5^5 + 6^5 + 19^5 + 20^5 + 29^5 + 31^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A344519 Numbers that are the sum of five positive fifth powers in exactly four ways.

Original entry on oeis.org

287618651, 1386406515, 1763135232, 2494769760, 2619898293, 3096064443, 3291315732, 3749564512, 4045994624, 5142310350, 5183605813, 5658934676, 5880926107, 7205217018, 7401155424, 7691215599, 8429499101, 8926086432, 9051501568, 9203796832, 9254212901
Offset: 1

Views

Author

David Consiglio, Jr., May 21 2021

Keywords

Comments

Differs from A344518 at term 20 because
9006349824 = 8^5 + 34^5 + 62^5 + 68^5 + 92^5
= 8^5 + 41^5 + 47^5 + 79^5 + 89^5
= 12^5 + 18^5 + 72^5 + 78^5 + 84^5
= 21^5 + 34^5 + 43^5 + 74^5 + 92^5
= 24^5 + 42^5 + 48^5 + 54^5 + 96^5.

Examples

			287618651 is a term because
287618651 =  8^5 + 21^5 + 27^5 + 27^5 + 48^5
          =  9^5 + 13^5 + 26^5 + 37^5 + 46^5
          = 11^5 + 12^5 + 23^5 + 41^5 + 44^5
          = 11^5 + 20^5 + 22^5 + 30^5 + 48^5.
[Corrected by _Patrick De Geest_, Dec 28 2024]
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 4])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.