A345562
Numbers that are the sum of six fourth powers in five or more ways.
Original entry on oeis.org
15395, 16610, 18866, 19235, 19410, 20996, 21011, 21251, 21316, 21331, 21491, 21620, 23811, 25091, 29700, 29715, 29906, 29955, 30356, 30995, 31235, 31266, 31331, 31506, 32035, 33651, 33795, 33891, 35171, 35411, 35636, 35796, 35971, 37811, 37971, 38051, 38595
Offset: 1
16610 is a term because 16610 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 10^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
A345863
Numbers that are the sum of five fifth powers in five or more ways.
Original entry on oeis.org
9006349824, 65799210368, 67629776576, 181085909632, 188189635424, 288203194368, 295677350451, 467139768468, 471359089024, 656243139157, 691381929281, 797466940832, 854533526901, 874953049024, 891862586132, 953769598750, 1038549256768
Offset: 1
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
A345608
Numbers that are the sum of seven fifth powers in five or more ways.
Original entry on oeis.org
6768576, 6776120, 7883668, 8625376, 8740709, 10036201, 10604054, 12476826, 12618493, 13006575, 13060213, 13080706, 13174250, 13536416, 13550162, 13562501, 13662500, 14110656, 14583968, 15169276, 15247994, 16053313, 16060683, 16374218, 16573507, 16600001
Offset: 1
6776120 is a term because 6776120 = 2^5 + 4^5 + 7^5 + 12^5 + 17^5 + 18^5 + 20^5 = 3^5 + 6^5 + 6^5 + 12^5 + 14^5 + 18^5 + 21^5 = 4^5 + 6^5 + 8^5 + 11^5 + 13^5 + 16^5 + 22^5 = 4^5 + 7^5 + 7^5 + 7^5 + 16^5 + 19^5 + 20^5 = 5^5 + 6^5 + 6^5 + 8^5 + 16^5 + 19^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
A345718
Numbers that are the sum of six fifth powers in four or more ways.
Original entry on oeis.org
12047994, 20646208, 21017489, 21300963, 21741819, 24993485, 27669050, 28576064, 30193856, 30785920, 35480456, 35735194, 36082750, 37303264, 39035975, 46814942, 47963291, 50047062, 50724345, 52987561, 53076800, 53606848, 54827300, 55101101, 56766906
Offset: 1
20646208 is a term because 20646208 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 28^5 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 29^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 25^5 + 25^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 4])
for x in range(len(rets)):
print(rets[x])
A345720
Numbers that are the sum of six fifth powers in six or more ways.
Original entry on oeis.org
287718651, 553545456, 746783675, 972232800, 1005620508, 1040741042, 1070652352, 1074892544, 1182426366, 1184966816, 1197332400, 1243267146, 1317183650, 1364866263, 1387455091, 1429663400, 1498160992, 1529189818, 1554833117, 1558594400, 1610298901
Offset: 1
553545456 is a term because 553545456 = 1^5 + 14^5 + 20^5 + 24^5 + 47^5 + 50^5 = 4^5 + 14^5 + 37^5 + 42^5 + 43^5 + 46^5 = 4^5 + 26^5 + 29^5 + 34^5 + 42^5 + 51^5 = 9^5 + 15^5 + 22^5 + 22^5 + 33^5 + 55^5 = 9^5 + 26^5 + 29^5 + 32^5 + 37^5 + 53^5 = 12^5 + 24^5 + 27^5 + 32^5 + 38^5 + 53^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A346360
Numbers that are the sum of six fifth powers in exactly five ways.
Original entry on oeis.org
54827300, 74115800, 74883600, 75609125, 113088250, 120274275, 166078869, 169692136, 174781858, 178736448, 182341225, 185558208, 194939538, 203054589, 218814275, 235067008, 250989825, 251772882, 252721458, 255453233, 258124975, 274616694, 282859667, 287677700
Offset: 1
54827300 is a term because 54827300 = 4^5 + 7^5 + 21^5 + 22^5 + 23^5 + 33^5 = 5^5 + 10^5 + 15^5 + 20^5 + 28^5 + 32^5 = 1^5 + 14^5 + 16^5 + 19^5 + 28^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 29^5 + 31^5 = 5^5 + 6^5 + 19^5 + 20^5 + 29^5 + 31^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments