cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345818 Numbers that are the sum of six fourth powers in exactly six ways.

Original entry on oeis.org

37811, 38051, 43251, 43571, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 49971, 52195, 53235, 54131, 56290, 57395, 57460, 57570, 59075, 59330, 59860, 60035, 62180, 62211, 63971, 66340, 67026, 67635, 67715, 67860, 67940, 68115, 68291, 68484, 69395, 69410
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345563 at term 1 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.

Examples

			37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345720 Numbers that are the sum of six fifth powers in six or more ways.

Original entry on oeis.org

287718651, 553545456, 746783675, 972232800, 1005620508, 1040741042, 1070652352, 1074892544, 1182426366, 1184966816, 1197332400, 1243267146, 1317183650, 1364866263, 1387455091, 1429663400, 1498160992, 1529189818, 1554833117, 1558594400, 1610298901
Offset: 1

Views

Author

David Consiglio, Jr., Jun 24 2021

Keywords

Examples

			553545456 is a term because 553545456 = 1^5 + 14^5 + 20^5 + 24^5 + 47^5 + 50^5 = 4^5 + 14^5 + 37^5 + 42^5 + 43^5 + 46^5 = 4^5 + 26^5 + 29^5 + 34^5 + 42^5 + 51^5 = 9^5 + 15^5 + 22^5 + 22^5 + 33^5 + 55^5 = 9^5 + 26^5 + 29^5 + 32^5 + 37^5 + 53^5 = 12^5 + 24^5 + 27^5 + 32^5 + 38^5 + 53^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A346283 Numbers that are the sum of seven fifth powers in exactly six ways.

Original entry on oeis.org

13562501, 14583968, 21555313, 22057487, 22066065, 23089782, 23345024, 24217918, 24401574, 24855016, 24952718, 24993517, 25052501, 25385064, 29558618, 30653536, 31613713, 32559143, 33005785, 33533765, 33635825, 33828631, 34267551, 34268332, 35431351, 35736040
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345609 at term 15 because 28608832 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 24^5 + 29^5 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 24^5 + 28^5 = 6^5 + 6^5 + 14^5 + 14^5 + 22^5 + 22^5 + 28^5 = 7^5 + 8^5 + 13^5 + 14^5 + 17^5 + 26^5 + 27^5 = 2^5 + 8^5 + 11^5 + 19^5 + 22^5 + 23^5 + 27^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 24^5 + 25^5 + 25^5.

Examples

			13562501 is a term because 13562501 = 1^5 + 1^5 + 1^5 + 9^5 + 14^5 + 20^5 + 25^5 = 1^5 + 15^5 + 15^5 + 15^5 + 15^5 + 15^5 + 25^5 = 6^5 + 7^5 + 11^5 + 16^5 + 18^5 + 19^5 + 24^5 = 7^5 + 7^5 + 11^5 + 13^5 + 19^5 + 21^5 + 23^5 = 2^5 + 6^5 + 14^5 + 18^5 + 18^5 + 21^5 + 22^5 = 1^5 + 5^5 + 15^5 + 20^5 + 20^5 + 20^5 + 20^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346360 Numbers that are the sum of six fifth powers in exactly five ways.

Original entry on oeis.org

54827300, 74115800, 74883600, 75609125, 113088250, 120274275, 166078869, 169692136, 174781858, 178736448, 182341225, 185558208, 194939538, 203054589, 218814275, 235067008, 250989825, 251772882, 252721458, 255453233, 258124975, 274616694, 282859667, 287677700
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345719 at term 25 because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.

Examples

			54827300 is a term because 54827300 = 4^5 + 7^5 + 21^5 + 22^5 + 23^5 + 33^5 = 5^5 + 10^5 + 15^5 + 20^5 + 28^5 + 32^5 = 1^5 + 14^5 + 16^5 + 19^5 + 28^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 29^5 + 31^5 = 5^5 + 6^5 + 19^5 + 20^5 + 29^5 + 31^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A346362 Numbers that are the sum of six fifth powers in exactly seven ways.

Original entry on oeis.org

1184966816, 1700336000, 1717860100, 1972000800, 2229475325, 2396275200, 2548597632, 2625460992, 2886251808, 3217068800, 3697267200, 3729261536, 3765398725, 4046532448, 4165116967, 4246566632, 4286704224, 4489548050, 4539955200, 4623694108, 4710031469
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345721 at term 6 because 2295937600 = 4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5 = 8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5 = 8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5 = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5 = 3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5 = 4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5 = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5 = 1^5 + 7^5 + 34^5 + 57^5 + 58^5 + 63^5.

Examples

			1184966816 is a term because 1184966816 = 15^5 + 24^5 + 27^5 + 38^5 + 39^5 + 63^5 = 2^5 + 28^5 + 36^5 + 36^5 + 42^5 + 62^5 = 4^5 + 24^5 + 38^5 + 38^5 + 40^5 + 62^5 = 21^5 + 32^5 + 37^5 + 41^5 + 45^5 + 60^5 = 8^5 + 14^5 + 34^5 + 40^5 + 52^5 + 58^5 = 11^5 + 17^5 + 22^5 + 49^5 + 51^5 + 56^5 = 11^5 + 16^5 + 22^5 + 52^5 + 52^5 + 53^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.