A345828
Numbers that are the sum of seven fourth powers in exactly six ways.
Original entry on oeis.org
10787, 15396, 15411, 15586, 15651, 16611, 16626, 16676, 16866, 17956, 18867, 19156, 19236, 19251, 19411, 19426, 19666, 20035, 20771, 21012, 21187, 21397, 21412, 21442, 21492, 21572, 21621, 21811, 21891, 22116, 22132, 22292, 22307, 22372, 22595, 22660, 22962
Offset: 1
15396 is a term because 15396 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 1^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 9^4 + 9^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
A345609
Numbers that are the sum of seven fifth powers in six or more ways.
Original entry on oeis.org
13562501, 14583968, 21555313, 22057487, 22066065, 23089782, 23345024, 24217918, 24401574, 24855016, 24952718, 24993517, 25052501, 25385064, 28608832, 29558618, 30653536, 31613713, 32559143, 33005785, 33533765, 33635825, 33828631, 34267551, 34268332, 35431351
Offset: 1
14583968 is a term because 14583968 = 1^5 + 4^5 + 14^5 + 16^5 + 19^5 + 21^5 + 23^5 = 2^5 + 4^5 + 14^5 + 14^5 + 20^5 + 22^5 + 22^5 = 4^5 + 5^5 + 10^5 + 15^5 + 20^5 + 21^5 + 23^5 = 6^5 + 8^5 + 9^5 + 15^5 + 15^5 + 20^5 + 25^5 = 6^5 + 8^5 + 14^5 + 14^5 + 14^5 + 16^5 + 26^5 = 6^5 + 10^5 + 12^5 + 12^5 + 16^5 + 16^5 + 26^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A346282
Numbers that are the sum of seven fifth powers in exactly five ways.
Original entry on oeis.org
6768576, 6776120, 7883668, 8625376, 8740709, 10036201, 10604054, 12476826, 12618493, 13006575, 13060213, 13080706, 13174250, 13536416, 13550162, 13662500, 14110656, 15169276, 15247994, 16053313, 16060683, 16374218, 16573507, 16600001, 17735057, 17749152
Offset: 1
6768576 is a term because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
A346284
Numbers that are the sum of seven fifth powers in exactly seven ways.
Original entry on oeis.org
28608832, 35663099, 36090526, 46998599, 51095638, 52541851, 54233651, 54827543, 54886349, 61263643, 61634374, 63514593, 64810976, 65198607, 66708676, 67887843, 70979107, 72970305, 74002457, 74115801, 74132607, 74487093, 75044651, 75378359, 75612250, 75997624
Offset: 1
28608832 is a term because 28608832 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 24^5 + 29^5 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 24^5 + 28^5 = 6^5 + 6^5 + 14^5 + 14^5 + 22^5 + 22^5 + 28^5 = 7^5 + 8^5 + 13^5 + 14^5 + 17^5 + 26^5 + 27^5 = 2^5 + 8^5 + 11^5 + 19^5 + 22^5 + 23^5 + 27^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 24^5 + 25^5 + 25^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A346331
Numbers that are the sum of eight fifth powers in exactly six ways.
Original entry on oeis.org
1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4970823, 5003645, 5112274, 5259111, 5449985, 5523925, 5722189
Offset: 1
1431397 is a term because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
A346361
Numbers that are the sum of six fifth powers in exactly six ways.
Original entry on oeis.org
287718651, 553545456, 746783675, 972232800, 1005620508, 1040741042, 1070652352, 1074892544, 1182426366, 1197332400, 1243267146, 1317183650, 1364866263, 1387455091, 1429663400, 1498160992, 1529189818, 1554833117, 1558594400, 1610298901, 1623782765, 1627228231
Offset: 1
287718651 is a term because 287718651 = 10^5 + 11^5 + 20^5 + 22^5 + 30^5 + 48^5 = 8^5 + 10^5 + 21^5 + 27^5 + 27^5 + 48^5 = 3^5 + 6^5 + 25^5 + 30^5 + 30^5 + 47^5 = 9^5 + 10^5 + 13^5 + 26^5 + 37^5 + 46^5 = 6^5 + 9^5 + 14^5 + 31^5 + 35^5 + 46^5 = 10^5 + 11^5 + 12^5 + 23^5 + 41^5 + 44^5.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**5 for x in range(1, 1000)]
for pos in cwr(power_terms, 6):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments