cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345572 Numbers that are the sum of seven fourth powers in six or more ways.

Original entry on oeis.org

10787, 15396, 15411, 15586, 15651, 16611, 16626, 16676, 16691, 16866, 17347, 17956, 17971, 18867, 19156, 19236, 19251, 19411, 19426, 19491, 19666, 20035, 20706, 20771, 21012, 21187, 21252, 21267, 21332, 21397, 21412, 21442, 21492, 21507, 21572, 21621, 21636
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			15396 is a term because 15396 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 1^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345818 Numbers that are the sum of six fourth powers in exactly six ways.

Original entry on oeis.org

37811, 38051, 43251, 43571, 44115, 44531, 45155, 45651, 45891, 47411, 47586, 49971, 52195, 53235, 54131, 56290, 57395, 57460, 57570, 59075, 59330, 59860, 60035, 62180, 62211, 63971, 66340, 67026, 67635, 67715, 67860, 67940, 68115, 68291, 68484, 69395, 69410
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345563 at term 1 because 21251 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 12^4 = 1^4 + 2^4 + 2^4 + 2^4 + 9^4 + 11^4 = 1^4 + 7^4 + 8^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 11^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 12^4 = 2^4 + 4^4 + 6^4 + 9^4 + 9^4 + 9^4 = 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 11^4.

Examples

			37811 is a term because 37811 = 1^4 + 2^4 + 2^4 + 7^4 + 11^4 + 12^4 = 2^4 + 2^4 + 4^4 + 7^4 + 9^4 + 13^4 = 2^4 + 3^4 + 6^4 + 6^4 + 9^4 + 13^4 = 3^4 + 4^4 + 8^4 + 8^4 + 11^4 + 11^4 = 4^4 + 6^4 + 7^4 + 9^4 + 9^4 + 12^4 = 5^4 + 5^4 + 9^4 + 10^4 + 10^4 + 10^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345827 Numbers that are the sum of seven fourth powers in exactly five ways.

Original entry on oeis.org

6642, 6707, 6772, 6882, 6947, 7922, 7987, 8227, 8962, 9267, 9507, 9747, 10116, 10291, 10722, 10867, 10932, 10962, 11331, 11411, 11571, 12676, 12851, 12916, 13187, 13252, 13891, 13956, 14131, 14211, 14707, 14772, 14802, 14917, 14932, 14947, 15012, 15092, 15316
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345571 at term 16 because 10787 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 8^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4.

Examples

			6707 is a term because 6707 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345829 Numbers that are the sum of seven fourth powers in exactly seven ways.

Original entry on oeis.org

16691, 17347, 17971, 20706, 21956, 22547, 22612, 23156, 23587, 23827, 23892, 24436, 25107, 25427, 25716, 25971, 26051, 27812, 29092, 29187, 29332, 29427, 29442, 29636, 29701, 29716, 29956, 29971, 30036, 30132, 30612, 30981, 30996, 31011, 31316, 31331, 31347
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345573 at term 4 because 19491 = 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 8^4 + 10^4 = 1^4 + 2^4 + 4^4 + 4^4 + 7^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 8^4 + 9^4 = 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 9^4 + 10^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 8^4 + 11^4 = 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 7^4 + 11^4 = 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 8^4 + 10^4 = 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 11^4 = 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 8^4.

Examples

			17347 is a term because 17347 = 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 = 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 8^4 + 9^4 + 9^4 = 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 9^4 + 9^4 = 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345838 Numbers that are the sum of eight fourth powers in exactly six ways.

Original entry on oeis.org

6723, 6788, 6853, 6898, 6963, 7028, 7938, 8068, 8178, 8308, 8483, 8963, 9173, 9348, 9413, 9493, 9668, 9763, 9828, 10003, 10132, 10258, 10277, 10307, 10628, 10708, 10738, 10788, 10933, 10978, 11108, 11123, 11188, 11347, 11363, 11428, 11492, 11652, 11668, 11843
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345581 at term 8 because 8003 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.

Examples

			6788 is a term because 6788 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345778 Numbers that are the sum of seven cubes in exactly six ways.

Original entry on oeis.org

955, 969, 1046, 1053, 1079, 1107, 1117, 1121, 1158, 1161, 1177, 1184, 1196, 1198, 1216, 1222, 1242, 1254, 1272, 1280, 1287, 1291, 1294, 1297, 1298, 1310, 1324, 1350, 1351, 1355, 1366, 1369, 1376, 1378, 1388, 1403, 1404, 1415, 1417, 1418, 1422, 1433, 1437
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345524 at term 5 because 1072 = 1^3 + 1^3 + 1^3 + 5^3 + 6^3 + 6^3 + 8^3 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 10^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 5^3 + 9^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 9^3 = 2^3 + 4^3 + 4^3 + 5^3 + 5^3 + 7^3 + 7^3 = 3^3 + 3^3 + 3^3 + 6^3 + 6^3 + 6^3 + 7^3 = 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 8^3.
Likely finite.

Examples

			969 is a term because 969 = 1^3 + 1^3 + 1^3 + 3^3 + 5^3 + 6^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 5^3 + 5^3 + 7^3 = 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 6^3 = 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3 + 8^3 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 = 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 + 6^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346283 Numbers that are the sum of seven fifth powers in exactly six ways.

Original entry on oeis.org

13562501, 14583968, 21555313, 22057487, 22066065, 23089782, 23345024, 24217918, 24401574, 24855016, 24952718, 24993517, 25052501, 25385064, 29558618, 30653536, 31613713, 32559143, 33005785, 33533765, 33635825, 33828631, 34267551, 34268332, 35431351, 35736040
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345609 at term 15 because 28608832 = 3^5 + 4^5 + 4^5 + 8^5 + 10^5 + 24^5 + 29^5 = 2^5 + 12^5 + 12^5 + 16^5 + 18^5 + 24^5 + 28^5 = 6^5 + 6^5 + 14^5 + 14^5 + 22^5 + 22^5 + 28^5 = 7^5 + 8^5 + 13^5 + 14^5 + 17^5 + 26^5 + 27^5 = 2^5 + 8^5 + 11^5 + 19^5 + 22^5 + 23^5 + 27^5 = 6^5 + 6^5 + 12^5 + 14^5 + 24^5 + 24^5 + 26^5 = 7^5 + 7^5 + 8^5 + 16^5 + 24^5 + 25^5 + 25^5.

Examples

			13562501 is a term because 13562501 = 1^5 + 1^5 + 1^5 + 9^5 + 14^5 + 20^5 + 25^5 = 1^5 + 15^5 + 15^5 + 15^5 + 15^5 + 15^5 + 25^5 = 6^5 + 7^5 + 11^5 + 16^5 + 18^5 + 19^5 + 24^5 = 7^5 + 7^5 + 11^5 + 13^5 + 19^5 + 21^5 + 23^5 = 2^5 + 6^5 + 14^5 + 18^5 + 18^5 + 21^5 + 22^5 = 1^5 + 5^5 + 15^5 + 20^5 + 20^5 + 20^5 + 20^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.