cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345581 Numbers that are the sum of eight fourth powers in six or more ways.

Original entry on oeis.org

6723, 6788, 6853, 6898, 6963, 7028, 7938, 8003, 8068, 8178, 8243, 8308, 8483, 8963, 9043, 9173, 9218, 9283, 9348, 9413, 9493, 9523, 9668, 9763, 9828, 10003, 10132, 10258, 10277, 10307, 10372, 10628, 10708, 10738, 10788, 10803, 10868, 10933, 10948, 10978
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			6788 is a term because 6788 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 6])
        for x in range(len(rets)):
            print(rets[x])

A345828 Numbers that are the sum of seven fourth powers in exactly six ways.

Original entry on oeis.org

10787, 15396, 15411, 15586, 15651, 16611, 16626, 16676, 16866, 17956, 18867, 19156, 19236, 19251, 19411, 19426, 19666, 20035, 20771, 21012, 21187, 21397, 21412, 21442, 21492, 21572, 21621, 21811, 21891, 22116, 22132, 22292, 22307, 22372, 22595, 22660, 22962
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345572 at term 9 because 16691 = 1^4 + 1^4 + 1^4 + 6^4 + 6^4 + 8^4 + 10^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 10^4 = 1^4 + 2^4 + 5^4 + 6^4 + 8^4 + 8^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 11^4 = 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 10^4 = 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 10^4 = 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4.

Examples

			15396 is a term because 15396 = 1^4 + 1^4 + 1^4 + 1^4 + 6^4 + 8^4 + 10^4 = 1^4 + 1^4 + 2^4 + 5^4 + 8^4 + 8^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 11^4 = 1^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 + 10^4 = 1^4 + 3^4 + 5^4 + 7^4 + 8^4 + 8^4 + 8^4 = 2^4 + 3^4 + 4^4 + 5^4 + 6^4 + 9^4 + 9^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345837 Numbers that are the sum of eight fourth powers in exactly five ways.

Original entry on oeis.org

4228, 4403, 4468, 5443, 5508, 5683, 6613, 6643, 6658, 6708, 6773, 6838, 6868, 6883, 6948, 7013, 7093, 7138, 7203, 7267, 7268, 7332, 7397, 7478, 7507, 7572, 7588, 7828, 7858, 7923, 7988, 8113, 8133, 8228, 8353, 8418, 8533, 8547, 8548, 8612, 8723, 8788, 8852
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345580 at term 11 because 6723 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			4403 is a term because 4403 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 5])
        for x in range(len(rets)):
            print(rets[x])

A345839 Numbers that are the sum of eight fourth powers in exactly seven ways.

Original entry on oeis.org

8003, 8243, 9043, 9218, 9283, 9523, 10372, 10803, 10868, 10948, 11043, 11412, 11557, 11587, 12083, 12692, 12932, 13188, 13333, 13508, 13972, 14147, 14387, 14883, 14933, 14948, 14963, 15013, 15028, 15093, 15173, 15268, 15317, 15332, 15397, 15412, 15413, 15492
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345582 at term 19 because 13268 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 8^4 + 9^4 = 1^4 + 1^4 + 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 8^4 = 1^4 + 1^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 + 9^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 9^4 = 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 10^4.

Examples

			8243 is a term because 8243 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A345848 Numbers that are the sum of nine fourth powers in exactly six ways.

Original entry on oeis.org

4469, 4484, 5444, 5459, 5524, 5589, 5699, 5764, 6629, 6659, 6674, 6694, 6724, 6789, 6884, 6899, 6914, 6934, 6949, 6964, 7014, 7154, 7219, 7334, 7348, 7349, 7413, 7459, 7478, 7494, 7523, 7524, 7588, 7589, 7604, 7653, 7669, 7734, 7779, 7874, 7954, 7989, 8069
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345590 at term 14 because 6739 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.

Examples

			4484 is a term because 4484 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A345788 Numbers that are the sum of eight cubes in exactly six ways.

Original entry on oeis.org

628, 719, 769, 776, 778, 795, 832, 839, 846, 858, 860, 865, 872, 875, 876, 882, 886, 891, 893, 895, 901, 907, 912, 927, 928, 931, 945, 946, 947, 951, 954, 956, 964, 965, 972, 989, 992, 998, 999, 1001, 1012, 1014, 1015, 1021, 1034, 1035, 1036, 1038, 1040, 1045
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345536 at term 22 because 902 = 1^3 + 1^3 + 2^3 + 2^3 + 3^3 + 4^3 + 4^3 + 9^3 = 1^3 + 1^3 + 3^3 + 4^3 + 5^3 + 5^3 + 6^3 + 7^3 = 1^3 + 2^3 + 3^3 + 3^3 + 4^3 + 6^3 + 6^3 + 7^3 = 1^3 + 2^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 5^3 + 9^3 = 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 7^3 + 7^3 = 3^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3.
Likely finite.

Examples

			719 is a term because 719 = 1^3 + 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 4^3 + 4^3 + 5^3 + 5^3 = 1^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 5^3 + 5^3 = 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 5^3 + 6^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])

A346331 Numbers that are the sum of eight fifth powers in exactly six ways.

Original entry on oeis.org

1431397, 2593811, 3329119, 3345410, 3609912, 3800722, 3932480, 4093604, 4096697, 4114187, 4129433, 4154031, 4169869, 4377714, 4451412, 4475603, 4484634, 4501409, 4730845, 4756642, 4882770, 4912477, 4970823, 5003645, 5112274, 5259111, 5449985, 5523925, 5722189
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345614 at term 10 because 4104553 = 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 5^5 + 7^5 + 21^5 = 3^5 + 3^5 + 4^5 + 6^5 + 8^5 + 14^5 + 16^5 + 19^5 = 3^5 + 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 18^5 + 18^5 = 3^5 + 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 18^5 + 18^5 = 1^5 + 1^5 + 4^5 + 7^5 + 10^5 + 16^5 + 16^5 + 18^5 = 7^5 + 11^5 + 11^5 + 13^5 + 14^5 + 15^5 + 16^5 + 16^5 = 6^5 + 12^5 + 12^5 + 13^5 + 13^5 + 15^5 + 16^5 + 16^5.

Examples

			1431397 is a term because 1431397 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 6])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.