cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345819 Numbers that are the sum of six fourth powers in exactly seven ways.

Original entry on oeis.org

21251, 43875, 48276, 49796, 53315, 58500, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 88355, 88660, 88675, 90355, 91475, 93410, 93650, 94690, 95155
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345564 at term 6 because 58035 = 1^4 + 1^4 + 9^4 + 10^4 + 12^4 + 12^4 = 1^4 + 4^4 + 5^4 + 8^4 + 11^4 + 14^4 = 1^4 + 5^4 + 6^4 + 11^4 + 12^4 + 12^4 = 2^4 + 2^4 + 4^4 + 5^4 + 13^4 + 13^4 = 2^4 + 6^4 + 6^4 + 7^4 + 7^4 + 15^4 = 2^4 + 8^4 + 10^4 + 11^4 + 11^4 + 11^4 = 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 15^4 = 4^4 + 5^4 + 6^4 + 9^4 + 12^4 + 13^4.

Examples

			43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 7])
        for x in range(len(rets)):
            print(rets[x])

A344923 Numbers that are the sum of four fourth powers in exactly seven ways.

Original entry on oeis.org

6576339, 16020018, 16408434, 22673634, 23056803, 33734834, 39786098, 43583138, 51071619, 52652754, 53731458, 57976083, 63985314, 64365939, 67655779, 68846274, 73744563, 75951138, 77495778, 87038883, 88648914, 89148114, 90665058, 90818898, 92800178, 93830803
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344922 at term 2 because 13155858 = 1^4 + 16^4 + 19^4 + 60^4 = 3^4 + 6^4 + 21^4 + 60^4 = 10^4 + 18^4 + 31^4 + 59^4 = 12^4 + 27^4 + 45^4 + 54^4 = 15^4 + 44^4 + 46^4 + 47^4 = 18^4 + 25^4 + 41^4 + 56^4 = 29^4 + 30^4 + 44^4 + 53^4 = 35^4 + 36^4 + 38^4 + 53^4.

Examples

			6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4  = 3^4 + 7^4 + 41^4 + 44^4  = 4^4 + 23^4 + 27^4 + 49^4  = 6^4 + 31^4 + 41^4 + 41^4  = 7^4 + 11^4 + 36^4 + 47^4  = 7^4 + 21^4 + 28^4 + 49^4  = 12^4 + 17^4 + 29^4 + 49^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A344941 Numbers that are the sum of five fourth powers in exactly six ways.

Original entry on oeis.org

151300, 225890, 236194, 243235, 246674, 250834, 286114, 288579, 300835, 302130, 302210, 303235, 309059, 317795, 320195, 334819, 334899, 335443, 336210, 338914, 346835, 356899, 363379, 366995, 373234, 375619, 389875, 391154, 392259, 393314, 394354, 412339
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344940 at term 2 because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.

Examples

			151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4  = 3^4 + 11^4 + 11^4 + 14^4 + 17^4  = 3^4 + 13^4 + 13^4 + 13^4 + 16^4  = 6^4 + 9^4 + 9^4 + 9^4 + 19^4  = 7^4 + 11^4 + 11^4 + 11^4 + 18^4  = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 6])
    for x in range(len(rets)):
        print(rets[x])

A344942 Numbers that are the sum of five fourth powers in seven or more ways.

Original entry on oeis.org

197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 534130, 548994, 564979, 568450, 571539, 602450, 602770, 619090, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 654754, 663155, 666739, 687314, 692754, 692899, 698019
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A344945 Numbers that are the sum of five fourth powers in exactly eight ways.

Original entry on oeis.org

534130, 654754, 663155, 729219, 737459, 742770, 758354, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 1009954, 1055619, 1083955, 1099459, 1101859, 1103554, 1106019, 1157634, 1167794, 1180003, 1215394, 1217539, 1246354, 1253074, 1255539, 1278690
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344944 at term 2 because 619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4 = 1^4 + 3^4 + 4^4 + 8^4 + 28^4 = 1^4 + 11^4 + 14^4 + 22^4 + 24^4 = 2^4 + 2^4 + 8^4 + 17^4 + 27^4 = 2^4 + 13^4 + 13^4 + 18^4 + 26^4 = 3^4 + 6^4 + 12^4 + 16^4 + 27^4 = 4^4 + 12^4 + 14^4 + 23^4 + 23^4 = 9^4 + 12^4 + 16^4 + 21^4 + 24^4 = 14^4 + 16^4 + 18^4 + 19^4 + 23^4.

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345181 Numbers that are the sum of five third powers in exactly seven ways.

Original entry on oeis.org

4472, 4544, 4600, 4957, 5076, 5113, 5120, 5132, 5165, 5174, 5347, 5354, 5384, 5391, 5410, 5445, 5474, 5481, 5507, 5543, 5617, 5715, 5760, 5834, 5895, 5923, 5984, 5986, 6049, 6128, 6131, 6245, 6280, 6373, 6407, 6434, 6436, 6544, 6553, 6733, 6768, 6831, 6840
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345180 at term 1 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3 = 1^3 + 2^3 + 2^3 + 9^3 + 14^3 = 1^3 + 8^3 + 9^3 + 10^3 + 10^3 = 2^3 + 2^3 + 3^3 + 5^3 + 15^3 = 2^3 + 3^3 + 5^3 + 8^3 + 14^3 = 2^3 + 8^3 + 8^3 + 8^3 + 12^3 = 3^3 + 6^3 + 7^3 + 8^3 + 13^3 = 5^3 + 5^3 + 5^3 + 9^3 + 13^3.

Examples

			4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.