cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A344922 Numbers that are the sum of four fourth powers in seven or more ways.

Original entry on oeis.org

6576339, 13155858, 16020018, 16408434, 22673634, 23056803, 26421474, 33734834, 35965458, 39786098, 39803778, 43583138, 51071619, 52652754, 53731458, 57976083, 63985314, 64365939, 67655779, 68846274, 73744563, 75951138, 77495778, 87038883, 88648914, 89148114
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4  = 3^4 + 7^4 + 41^4 + 44^4  = 4^4 + 23^4 + 27^4 + 49^4  = 6^4 + 31^4 + 41^4 + 41^4  = 7^4 + 11^4 + 36^4 + 47^4  = 7^4 + 21^4 + 28^4 + 49^4  = 12^4 + 17^4 + 29^4 + 49^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A344940 Numbers that are the sum of five fourth powers in six or more ways.

Original entry on oeis.org

151300, 197779, 211059, 217154, 225890, 236194, 236675, 243235, 246674, 250834, 286114, 288579, 300835, 302130, 302210, 303235, 309059, 317795, 320195, 334819, 334899, 335443, 336210, 338914, 346835, 356899, 363379, 366995, 373234, 375619, 389875, 391154
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			151300 is a term because 151300 = 3^4 + 3^4 + 3^4 + 12^4 + 19^4  = 3^4 + 11^4 + 11^4 + 14^4 + 17^4  = 3^4 + 13^4 + 13^4 + 13^4 + 16^4  = 6^4 + 9^4 + 9^4 + 9^4 + 19^4  = 7^4 + 11^4 + 11^4 + 11^4 + 18^4  = 8^4 + 9^4 + 13^4 + 13^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A345180 Numbers that are the sum of five third powers in seven or more ways.

Original entry on oeis.org

4392, 4472, 4544, 4600, 4915, 4957, 5076, 5113, 5120, 5132, 5139, 5165, 5174, 5256, 5321, 5347, 5354, 5384, 5391, 5410, 5445, 5474, 5481, 5507, 5543, 5617, 5624, 5643, 5678, 5715, 5741, 5760, 5769, 5797, 5832, 5834, 5860, 5895, 5914, 5923, 5984, 5986, 6049
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A345564 Numbers that are the sum of six fourth powers in seven or more ways.

Original entry on oeis.org

21251, 43875, 48276, 49796, 53315, 58035, 58500, 59780, 59795, 59811, 67875, 68306, 69155, 69779, 71955, 72051, 72131, 73970, 74420, 74851, 77010, 80291, 80515, 81875, 82275, 84515, 86436, 86451, 86531, 87075, 87746, 88355, 88595, 88660, 88675, 90355, 91475
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			43875 is a term because 43875 = 1^4 + 2^4 + 9^4 + 9^4 + 10^4 + 12^4 = 2^4 + 2^4 + 2^4 + 5^4 + 11^4 + 13^4 = 2^4 + 2^4 + 5^4 + 7^4 + 7^4 + 14^4 = 2^4 + 5^4 + 6^4 + 9^4 + 11^4 + 12^4 = 3^4 + 7^4 + 8^4 + 9^4 + 10^4 + 12^4 = 4^4 + 4^4 + 7^4 + 7^4 + 10^4 + 13^4 = 5^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A344943 Numbers that are the sum of five fourth powers in exactly seven ways.

Original entry on oeis.org

197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 548994, 564979, 568450, 571539, 602450, 602770, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 666739, 687314, 692754, 692899, 698019, 708499, 716739, 728914, 730914
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344942 at term 10 because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4 = 2^4 + 2^4 + 4^4 + 7^4 + 27^4 = 2^4 + 3^4 + 6^4 + 6^4 + 27^4 = 2^4 + 6^4 + 9^4 + 21^4 + 24^4 = 4^4 + 16^4 + 17^4 + 18^4 + 23^4 = 6^4 + 8^4 + 11^4 + 22^4 + 23^4 = 7^4 + 8^4 + 16^4 + 19^4 + 24^4 = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.

Examples

			197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A344944 Numbers that are the sum of five fourth powers in eight or more ways.

Original entry on oeis.org

534130, 619090, 654754, 663155, 729219, 737459, 742770, 758354, 775714, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 954979, 1009954, 1055619, 1083955, 1099459, 1100579, 1101859, 1103554, 1106019, 1157634, 1167794, 1179379, 1180003, 1186834
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.