cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345150 Numbers that are the sum of four third powers in seven or more ways.

Original entry on oeis.org

13104, 18928, 19376, 20755, 21203, 21896, 22743, 24544, 24570, 24787, 25172, 25928, 27720, 27755, 27846, 28917, 29582, 30429, 31031, 31248, 31339, 31402, 31528, 32858, 33579, 34056, 34624, 34713, 34776, 35289, 35317, 35441, 35497, 35712, 36162, 36190, 36225
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3  = 1^3 + 11^3 + 14^3 + 19^3  = 2^3 + 9^3 + 15^3 + 19^3  = 4^3 + 6^3 + 14^3 + 20^3  = 4^3 + 9^3 + 10^3 + 21^3  = 5^3 + 7^3 + 11^3 + 21^3  = 8^3 + 9^3 + 14^3 + 19^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A345174 Numbers that are the sum of five third powers in six or more ways.

Original entry on oeis.org

2430, 2979, 3214, 3249, 3312, 3492, 3520, 3737, 3753, 3788, 3816, 3842, 3942, 3968, 4121, 4185, 4213, 4267, 4355, 4392, 4411, 4418, 4446, 4453, 4456, 4465, 4472, 4482, 4509, 4544, 4563, 4600, 4626, 4663, 4670, 4723, 4753, 4896, 4905, 4915, 4924, 4938, 4941
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			2430 is a term because 2430 = 1^3 + 2^3 + 2^3 + 5^3 + 12^3  = 1^3 + 3^3 + 4^3 + 7^3 + 11^3  = 2^3 + 2^3 + 6^3 + 6^3 + 11^3  = 2^3 + 3^3 + 3^3 + 9^3 + 10^3  = 3^3 + 5^3 + 8^3 + 8^3 + 8^3  = 3^3 + 4^3 + 7^3 + 8^3 + 9^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A345183 Numbers that are the sum of five third powers in eight or more ways.

Original entry on oeis.org

4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5860, 5914, 6075, 6112, 6138, 6202, 6462, 6497, 6499, 6560, 6588, 6616, 6642, 6651, 6677, 6833, 6859, 6884, 6947, 7001, 7008, 7038, 7057, 7064, 7099, 7111, 7128, 7155, 7190, 7218, 7316
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3  = 1^3 + 3^3 + 7^3 + 9^3 + 14^3  = 1^3 + 8^3 + 8^3 + 11^3 + 11^3  = 2^3 + 4^3 + 6^3 + 6^3 + 15^3  = 3^3 + 3^3 + 5^3 + 7^3 + 15^3  = 3^3 + 3^3 + 10^3 + 11^3 + 11^3  = 4^3 + 6^3 + 6^3 + 8^3 + 14^3  = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A345516 Numbers that are the sum of six cubes in seven or more ways.

Original entry on oeis.org

1710, 1766, 1773, 1981, 1988, 2051, 2105, 2160, 2168, 2196, 2249, 2251, 2259, 2277, 2314, 2322, 2349, 2368, 2375, 2376, 2417, 2424, 2431, 2438, 2457, 2466, 2480, 2492, 2494, 2513, 2520, 2531, 2538, 2539, 2548, 2555, 2557, 2564, 2565, 2574, 2583, 2593, 2611
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1766 is a term because 1766 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 11^3 = 1^3 + 1^3 + 1^3 + 5^3 + 5^3 + 10^3 = 1^3 + 1^3 + 2^3 + 3^3 + 8^3 + 9^3 = 1^3 + 3^3 + 3^3 + 5^3 + 8^3 + 8^3 = 1^3 + 3^3 + 3^3 + 4^3 + 7^3 + 9^3 = 2^3 + 2^3 + 3^3 + 6^3 + 6^3 + 9^3 = 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 10^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A344942 Numbers that are the sum of five fourth powers in seven or more ways.

Original entry on oeis.org

197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 534130, 548994, 564979, 568450, 571539, 602450, 602770, 619090, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 654754, 663155, 666739, 687314, 692754, 692899, 698019
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A345181 Numbers that are the sum of five third powers in exactly seven ways.

Original entry on oeis.org

4472, 4544, 4600, 4957, 5076, 5113, 5120, 5132, 5165, 5174, 5347, 5354, 5384, 5391, 5410, 5445, 5474, 5481, 5507, 5543, 5617, 5715, 5760, 5834, 5895, 5923, 5984, 5986, 6049, 6128, 6131, 6245, 6280, 6373, 6407, 6434, 6436, 6544, 6553, 6733, 6768, 6831, 6840
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345180 at term 1 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3 = 1^3 + 2^3 + 2^3 + 9^3 + 14^3 = 1^3 + 8^3 + 9^3 + 10^3 + 10^3 = 2^3 + 2^3 + 3^3 + 5^3 + 15^3 = 2^3 + 3^3 + 5^3 + 8^3 + 14^3 = 2^3 + 8^3 + 8^3 + 8^3 + 12^3 = 3^3 + 6^3 + 7^3 + 8^3 + 13^3 = 5^3 + 5^3 + 5^3 + 9^3 + 13^3.

Examples

			4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A344800 Numbers that are the sum of five squares in seven or more ways.

Original entry on oeis.org

77, 83, 85, 88, 91, 94, 99, 101, 104, 106, 107, 109, 112, 115, 116, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161
Offset: 1

Views

Author

Sean A. Irvine, May 28 2021

Keywords

Crossrefs

Showing 1-7 of 7 results.