cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345152 Numbers that are the sum of four third powers in eight or more ways.

Original entry on oeis.org

21896, 27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 36225, 40105, 42120, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46683, 46872, 46900, 47600, 48321, 48825, 49042, 50112, 50689, 50806, 50904, 51058, 51408, 51480, 51506, 51597, 51688
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3  = 1^3 + 16^3 + 17^3 + 26^3  = 2^3 + 12^3 + 21^3 + 25^3  = 3^3 + 3^3 + 14^3 + 29^3  = 4^3 + 17^3 + 21^3 + 23^3  = 5^3 + 11^3 + 15^3 + 28^3  = 6^3 + 6^3 + 22^3 + 25^3  = 7^3 + 14^3 + 18^3 + 26^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A345180 Numbers that are the sum of five third powers in seven or more ways.

Original entry on oeis.org

4392, 4472, 4544, 4600, 4915, 4957, 5076, 5113, 5120, 5132, 5139, 5165, 5174, 5256, 5321, 5347, 5354, 5384, 5391, 5410, 5445, 5474, 5481, 5507, 5543, 5617, 5624, 5643, 5678, 5715, 5741, 5760, 5769, 5797, 5832, 5834, 5860, 5895, 5914, 5923, 5984, 5986, 6049
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A345185 Numbers that are the sum of five third powers in nine or more ways.

Original entry on oeis.org

5860, 6112, 6138, 6462, 6497, 6588, 6651, 6859, 6947, 7001, 7038, 7057, 7064, 7099, 7190, 7316, 7328, 7372, 7433, 7561, 7587, 7703, 7759, 7841, 7902, 8056, 8163, 8289, 8352, 8371, 8443, 8506, 8560, 8569, 8630, 8632, 8758, 8928, 8991, 9017, 9045, 9080, 9099
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			6112 is a term because 6112 = 1^3 + 2^3 + 9^3 + 11^3 + 14^3  = 1^3 + 3^3 + 7^3 + 12^3 + 14^3  = 1^3 + 6^3 + 6^3 + 7^3 + 16^3  = 2^3 + 2^3 + 9^3 + 9^3 + 15^3  = 2^3 + 3^3 + 5^3 + 11^3 + 15^3  = 2^3 + 8^3 + 9^3 + 9^3 + 14^3  = 3^3 + 3^3 + 3^3 + 4^3 + 17^3  = 3^3 + 5^3 + 8^3 + 11^3 + 14^3  = 8^3 + 8^3 + 8^3 + 11^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A345517 Numbers that are the sum of six cubes in eight or more ways.

Original entry on oeis.org

1981, 2105, 2168, 2277, 2368, 2376, 2431, 2438, 2457, 2466, 2494, 2538, 2555, 2557, 2583, 2593, 2646, 2665, 2672, 2709, 2746, 2753, 2763, 2765, 2772, 2880, 2881, 2889, 2916, 2942, 2961, 2970, 2977, 2979, 2980, 2987, 3007, 3033, 3040, 3042, 3043, 3049, 3068
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A344944 Numbers that are the sum of five fourth powers in eight or more ways.

Original entry on oeis.org

534130, 619090, 654754, 663155, 729219, 737459, 742770, 758354, 775714, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 954979, 1009954, 1055619, 1083955, 1099459, 1100579, 1101859, 1103554, 1106019, 1157634, 1167794, 1179379, 1180003, 1186834
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A345184 Numbers that are the sum of five third powers in exactly eight ways.

Original entry on oeis.org

4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5914, 6075, 6202, 6499, 6560, 6616, 6642, 6677, 6833, 6884, 7008, 7111, 7128, 7155, 7218, 7344, 7395, 7641, 7696, 7729, 7785, 7813, 7820, 7849, 7883, 8037, 8100, 8243, 8282, 8308, 8315
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345183 at term 13 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3.

Examples

			4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3  = 1^3 + 3^3 + 7^3 + 9^3 + 14^3  = 1^3 + 8^3 + 8^3 + 11^3 + 11^3  = 2^3 + 4^3 + 6^3 + 6^3 + 15^3  = 3^3 + 3^3 + 5^3 + 7^3 + 15^3  = 3^3 + 3^3 + 10^3 + 11^3 + 11^3  = 4^3 + 6^3 + 6^3 + 8^3 + 14^3  = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A344801 Numbers that are the sum of five squares in eight or more ways.

Original entry on oeis.org

91, 101, 104, 106, 107, 109, 112, 115, 116, 118, 119, 122, 123, 125, 126, 127, 128, 131, 133, 134, 136, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 151, 152, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173
Offset: 1

Views

Author

Sean A. Irvine, May 29 2021

Keywords

Crossrefs

Showing 1-7 of 7 results.