cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345183 Numbers that are the sum of five third powers in eight or more ways.

Original entry on oeis.org

4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5860, 5914, 6075, 6112, 6138, 6202, 6462, 6497, 6499, 6560, 6588, 6616, 6642, 6651, 6677, 6833, 6859, 6884, 6947, 7001, 7008, 7038, 7057, 7064, 7099, 7111, 7128, 7155, 7190, 7218, 7316
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3  = 1^3 + 3^3 + 7^3 + 9^3 + 14^3  = 1^3 + 8^3 + 8^3 + 11^3 + 11^3  = 2^3 + 4^3 + 6^3 + 6^3 + 15^3  = 3^3 + 3^3 + 5^3 + 7^3 + 15^3  = 3^3 + 3^3 + 10^3 + 11^3 + 11^3  = 4^3 + 6^3 + 6^3 + 8^3 + 14^3  = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A345565 Numbers that are the sum of six fourth powers in eight or more ways.

Original entry on oeis.org

58035, 59780, 87746, 88595, 96195, 96450, 102371, 106451, 106515, 108035, 108275, 108290, 108771, 112370, 112931, 115251, 122835, 122850, 122915, 124691, 125971, 132546, 133395, 133571, 133586, 134675, 134931, 136931, 138275, 138595, 143650, 144755, 144835
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			59780 is a term because 59780 = 1^4 + 1^4 + 1^4 + 5^4 + 12^4 + 14^4 = 1^4 + 1^4 + 6^4 + 6^4 + 9^4 + 15^4 = 1^4 + 2^4 + 9^4 + 10^4 + 11^4 + 13^4 = 1^4 + 4^4 + 7^4 + 7^4 + 8^4 + 15^4 = 1^4 + 7^4 + 7^4 + 9^4 + 10^4 + 14^4 = 2^4 + 5^4 + 6^4 + 11^4 + 11^4 + 13^4 = 3^4 + 7^4 + 8^4 + 10^4 + 11^4 + 13^4 = 5^4 + 6^4 + 7^4 + 7^4 + 11^4 + 14^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A341891 Numbers that are the sum of five fourth powers in nine or more ways.

Original entry on oeis.org

619090, 775714, 954979, 1100579, 1179379, 1186834, 1205539, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1574850, 1699234, 1713859, 1734899, 1801459, 1839874, 1858594, 1863859, 1877394, 1880850, 1882579, 1950355, 1951650
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Examples

			619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
       =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
       =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
       =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
       =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
       =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
       =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
       =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
       = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A344924 Numbers that are the sum of four fourth powers in eight or more ways.

Original entry on oeis.org

13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 328118259
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4  = 3^4 + 6^4 + 21^4 + 60^4  = 10^4 + 18^4 + 31^4 + 59^4  = 12^4 + 27^4 + 45^4 + 54^4  = 15^4 + 44^4 + 46^4 + 47^4  = 18^4 + 25^4 + 41^4 + 56^4  = 29^4 + 30^4 + 44^4 + 53^4  = 35^4 + 36^4 + 38^4 + 53^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A344942 Numbers that are the sum of five fourth powers in seven or more ways.

Original entry on oeis.org

197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 534130, 548994, 564979, 568450, 571539, 602450, 602770, 619090, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 654754, 663155, 666739, 687314, 692754, 692899, 698019
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4  = 1^4 + 7^4 + 11^4 + 12^4 + 20^4  = 1^4 + 10^4 + 12^4 + 17^4 + 17^4  = 2^4 + 4^4 + 5^4 + 7^4 + 21^4  = 3^4 + 5^4 + 6^4 + 6^4 + 21^4  = 4^4 + 7^4 + 9^4 + 13^4 + 20^4  = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A344945 Numbers that are the sum of five fourth powers in exactly eight ways.

Original entry on oeis.org

534130, 654754, 663155, 729219, 737459, 742770, 758354, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 1009954, 1055619, 1083955, 1099459, 1101859, 1103554, 1106019, 1157634, 1167794, 1180003, 1215394, 1217539, 1246354, 1253074, 1255539, 1278690
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344944 at term 2 because 619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4 = 1^4 + 3^4 + 4^4 + 8^4 + 28^4 = 1^4 + 11^4 + 14^4 + 22^4 + 24^4 = 2^4 + 2^4 + 8^4 + 17^4 + 27^4 = 2^4 + 13^4 + 13^4 + 18^4 + 26^4 = 3^4 + 6^4 + 12^4 + 16^4 + 27^4 = 4^4 + 12^4 + 14^4 + 23^4 + 23^4 = 9^4 + 12^4 + 16^4 + 21^4 + 24^4 = 14^4 + 16^4 + 18^4 + 19^4 + 23^4.

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.