A345152
Numbers that are the sum of four third powers in eight or more ways.
Original entry on oeis.org
21896, 27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 36225, 40105, 42120, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46683, 46872, 46900, 47600, 48321, 48825, 49042, 50112, 50689, 50806, 50904, 51058, 51408, 51480, 51506, 51597, 51688
Offset: 1
30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3 = 1^3 + 16^3 + 17^3 + 26^3 = 2^3 + 12^3 + 21^3 + 25^3 = 3^3 + 3^3 + 14^3 + 29^3 = 4^3 + 17^3 + 21^3 + 23^3 = 5^3 + 11^3 + 15^3 + 28^3 = 6^3 + 6^3 + 22^3 + 25^3 = 7^3 + 14^3 + 18^3 + 26^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A344922
Numbers that are the sum of four fourth powers in seven or more ways.
Original entry on oeis.org
6576339, 13155858, 16020018, 16408434, 22673634, 23056803, 26421474, 33734834, 35965458, 39786098, 39803778, 43583138, 51071619, 52652754, 53731458, 57976083, 63985314, 64365939, 67655779, 68846274, 73744563, 75951138, 77495778, 87038883, 88648914, 89148114
Offset: 1
6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4 = 3^4 + 7^4 + 41^4 + 44^4 = 4^4 + 23^4 + 27^4 + 49^4 = 6^4 + 31^4 + 41^4 + 41^4 = 7^4 + 11^4 + 36^4 + 47^4 = 7^4 + 21^4 + 28^4 + 49^4 = 12^4 + 17^4 + 29^4 + 49^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A344925
Numbers that are the sum of four fourth powers in exactly eight ways.
Original entry on oeis.org
13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 331957458
Offset: 1
13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4 = 3^4 + 6^4 + 21^4 + 60^4 = 10^4 + 18^4 + 31^4 + 59^4 = 12^4 + 27^4 + 45^4 + 54^4 = 15^4 + 44^4 + 46^4 + 47^4 = 18^4 + 25^4 + 41^4 + 56^4 = 29^4 + 30^4 + 44^4 + 53^4 = 35^4 + 36^4 + 38^4 + 53^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A344926
Numbers that are the sum of four fourth powers in nine or more ways.
Original entry on oeis.org
328118259, 385202034, 395613234, 489597858, 592417938, 625839858, 641398338, 674511618, 677125218, 693239634, 699598578, 722302434, 779889314, 780278643, 780595299, 781388643, 782999714, 791204514, 792005379, 797405714, 797935698, 803898018, 805299699
Offset: 1
328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A344944
Numbers that are the sum of five fourth powers in eight or more ways.
Original entry on oeis.org
534130, 619090, 654754, 663155, 729219, 737459, 742770, 758354, 775714, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 954979, 1009954, 1055619, 1083955, 1099459, 1100579, 1101859, 1103554, 1106019, 1157634, 1167794, 1179379, 1180003, 1186834
Offset: 1
534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4 = 2^4 + 2^4 + 4^4 + 7^4 + 27^4 = 2^4 + 3^4 + 6^4 + 6^4 + 27^4 = 2^4 + 6^4 + 9^4 + 21^4 + 24^4 = 4^4 + 16^4 + 17^4 + 18^4 + 23^4 = 6^4 + 8^4 + 11^4 + 22^4 + 23^4 = 7^4 + 8^4 + 16^4 + 19^4 + 24^4 = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A344737
Numbers that are the sum of three fourth powers in eight or more ways.
Original entry on oeis.org
5745705602, 8185089458, 11054952818, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 37314202562, 38214512882, 41923075922, 46543615202, 49511121842, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63429959138
Offset: 1
5745705602 is a term because 5745705602 = 3^4 + 230^4 + 233^4 = 25^4 + 218^4 + 243^4 = 43^4 + 207^4 + 250^4 = 58^4 + 197^4 + 255^4 = 85^4 + 177^4 + 262^4 = 90^4 + 173^4 + 263^4 = 102^4 + 163^4 + 265^4 = 122^4 + 145^4 + 267^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
Showing 1-6 of 6 results.
Comments