A345150
Numbers that are the sum of four third powers in seven or more ways.
Original entry on oeis.org
13104, 18928, 19376, 20755, 21203, 21896, 22743, 24544, 24570, 24787, 25172, 25928, 27720, 27755, 27846, 28917, 29582, 30429, 31031, 31248, 31339, 31402, 31528, 32858, 33579, 34056, 34624, 34713, 34776, 35289, 35317, 35441, 35497, 35712, 36162, 36190, 36225
Offset: 1
13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3 = 1^3 + 11^3 + 14^3 + 19^3 = 2^3 + 9^3 + 15^3 + 19^3 = 4^3 + 6^3 + 14^3 + 20^3 = 4^3 + 9^3 + 10^3 + 21^3 = 5^3 + 7^3 + 11^3 + 21^3 = 8^3 + 9^3 + 14^3 + 19^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A344904
Numbers that are the sum of four fourth powers in six or more ways.
Original entry on oeis.org
3847554, 5624739, 6044418, 6576339, 6593538, 6899603, 9851058, 10456338, 11645394, 12378018, 13155858, 13638738, 16020018, 16408434, 16990803, 19081089, 20622338, 20649603, 20755218, 20795763, 22673634, 23056803, 24174003, 24368769, 25265553, 25850178
Offset: 1
3847554 is a term because 3847554 = 2^4 + 13^4 + 29^4 + 42^4 = 2^4 + 21^4 + 22^4 + 43^4 = 6^4 + 11^4 + 17^4 + 44^4 = 6^4 + 31^4 + 32^4 + 37^4 = 9^4 + 29^4 + 32^4 + 38^4 = 13^4 + 26^4 + 32^4 + 39^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A344923
Numbers that are the sum of four fourth powers in exactly seven ways.
Original entry on oeis.org
6576339, 16020018, 16408434, 22673634, 23056803, 33734834, 39786098, 43583138, 51071619, 52652754, 53731458, 57976083, 63985314, 64365939, 67655779, 68846274, 73744563, 75951138, 77495778, 87038883, 88648914, 89148114, 90665058, 90818898, 92800178, 93830803
Offset: 1
6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4 = 3^4 + 7^4 + 41^4 + 44^4 = 4^4 + 23^4 + 27^4 + 49^4 = 6^4 + 31^4 + 41^4 + 41^4 = 7^4 + 11^4 + 36^4 + 47^4 = 7^4 + 21^4 + 28^4 + 49^4 = 12^4 + 17^4 + 29^4 + 49^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A344924
Numbers that are the sum of four fourth powers in eight or more ways.
Original entry on oeis.org
13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 328118259
Offset: 1
13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4 = 3^4 + 6^4 + 21^4 + 60^4 = 10^4 + 18^4 + 31^4 + 59^4 = 12^4 + 27^4 + 45^4 + 54^4 = 15^4 + 44^4 + 46^4 + 47^4 = 18^4 + 25^4 + 41^4 + 56^4 = 29^4 + 30^4 + 44^4 + 53^4 = 35^4 + 36^4 + 38^4 + 53^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A344942
Numbers that are the sum of five fourth powers in seven or more ways.
Original entry on oeis.org
197779, 211059, 217154, 236675, 431155, 444019, 480739, 503539, 530659, 534130, 548994, 564979, 568450, 571539, 602450, 602770, 619090, 621859, 625635, 625939, 626194, 650659, 651954, 653059, 654130, 654754, 663155, 666739, 687314, 692754, 692899, 698019
Offset: 1
197779 is a term because 197779 = 1^4 + 5^4 + 6^4 + 16^4 + 19^4 = 1^4 + 7^4 + 11^4 + 12^4 + 20^4 = 1^4 + 10^4 + 12^4 + 17^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 21^4 = 3^4 + 5^4 + 6^4 + 6^4 + 21^4 = 4^4 + 7^4 + 9^4 + 13^4 + 20^4 = 11^4 + 13^4 + 14^4 + 15^4 + 16^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A344944
Numbers that are the sum of five fourth powers in eight or more ways.
Original entry on oeis.org
534130, 619090, 654754, 663155, 729219, 737459, 742770, 758354, 775714, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 954979, 1009954, 1055619, 1083955, 1099459, 1100579, 1101859, 1103554, 1106019, 1157634, 1167794, 1179379, 1180003, 1186834
Offset: 1
534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4 = 2^4 + 2^4 + 4^4 + 7^4 + 27^4 = 2^4 + 3^4 + 6^4 + 6^4 + 27^4 = 2^4 + 6^4 + 9^4 + 21^4 + 24^4 = 4^4 + 16^4 + 17^4 + 18^4 + 23^4 = 6^4 + 8^4 + 11^4 + 22^4 + 23^4 = 7^4 + 8^4 + 16^4 + 19^4 + 24^4 = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 8])
for x in range(len(rets)):
print(rets[x])
A344729
Numbers that are the sum of three fourth powers in seven or more ways.
Original entry on oeis.org
779888018, 5745705602, 8185089458, 11054952818, 12478208288, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 33038379458, 37314202562, 38214512882, 41923075922, 46543615202, 49511121842, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63170929458, 63429959138, 71035097042, 71447292098, 73526154338, 73665805122, 81629817458
Offset: 1
779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
Showing 1-7 of 7 results.
Comments