cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344922 Numbers that are the sum of four fourth powers in seven or more ways.

Original entry on oeis.org

6576339, 13155858, 16020018, 16408434, 22673634, 23056803, 26421474, 33734834, 35965458, 39786098, 39803778, 43583138, 51071619, 52652754, 53731458, 57976083, 63985314, 64365939, 67655779, 68846274, 73744563, 75951138, 77495778, 87038883, 88648914, 89148114
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			6576339 is a term because 6576339 = 1^4 + 24^4 + 41^4 + 43^4  = 3^4 + 7^4 + 41^4 + 44^4  = 4^4 + 23^4 + 27^4 + 49^4  = 6^4 + 31^4 + 41^4 + 41^4  = 7^4 + 11^4 + 36^4 + 47^4  = 7^4 + 21^4 + 28^4 + 49^4  = 12^4 + 17^4 + 29^4 + 49^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A345086 Numbers that are the sum of three third powers in seven or more ways.

Original entry on oeis.org

2016496, 2562624, 4525632, 4783680, 5268024, 5618250, 6366816, 6525000, 6755328, 7374375, 7451352, 7457120, 8275392, 9063144, 9086104, 9931167, 10036872, 10266138, 10371024, 10973880, 12002472, 12452049, 12742920, 12983517, 13581352, 13639816, 13641480
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Examples

			2016496 is a term because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A344647 Numbers that are the sum of three fourth powers in six or more ways.

Original entry on oeis.org

292965218, 779888018, 1010431058, 1110995522, 1500533762, 1665914642, 2158376402, 2373191618, 2636686962, 2689817858, 3019732898, 3205282178, 3642994082, 3831800882, 4324686002, 4687443488, 5064808658, 5175310322, 5745705602, 6317554418, 6450435362, 6720346178, 7018992162
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Examples

			1010431058 is a term because 1010431058 = 13^4 + 143^4 + 156^4 = 31^4 + 132^4 + 163^4 = 44^4 + 123^4 + 167^4 = 52^4 + 117^4 + 169^4 = 69^4 + 103^4 + 172^4 = 81^4 + 92^4 + 173^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A344730 Numbers that are the sum of three fourth powers in exactly seven ways.

Original entry on oeis.org

779888018, 12478208288, 33038379458, 63170929458, 114872872562, 199651332608, 329296962722, 393006728738, 419200136082, 487430011250, 528614071328, 959702600738, 1010734871328, 1369390032738, 1502549262242, 1525400097858, 1653983981762, 1668273965442, 1756039197458, 1793250582818, 1837965960992, 1912768493202
Offset: 1

Views

Author

David Consiglio, Jr., May 27 2021

Keywords

Comments

Differs from A344729 at term 2 because 5745705602 3^4+ 230^4+ 233^4 = 25^4+ 218^4+ 243^4 = 43^4+ 207^4+ 250^4 = 58^4+ 197^4+ 255^4 = 85^4+ 177^4+ 262^4 = 90^4+ 173^4+ 263^4 = 102^4+ 163^4+ 265^4 = 122^4+ 145^4+ 267^4

Examples

			779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A344737 Numbers that are the sum of three fourth powers in eight or more ways.

Original entry on oeis.org

5745705602, 8185089458, 11054952818, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 37314202562, 38214512882, 41923075922, 46543615202, 49511121842, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63429959138
Offset: 1

Views

Author

David Consiglio, Jr., May 27 2021

Keywords

Examples

			5745705602 is a term because 5745705602 = 3^4 + 230^4 + 233^4 = 25^4 + 218^4 + 243^4 = 43^4 + 207^4 + 250^4 = 58^4 + 197^4 + 255^4 = 85^4 + 177^4 + 262^4 = 90^4 + 173^4 + 263^4 = 102^4 + 163^4 + 265^4 = 122^4 + 145^4 + 267^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.