cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A344904 Numbers that are the sum of four fourth powers in six or more ways.

Original entry on oeis.org

3847554, 5624739, 6044418, 6576339, 6593538, 6899603, 9851058, 10456338, 11645394, 12378018, 13155858, 13638738, 16020018, 16408434, 16990803, 19081089, 20622338, 20649603, 20755218, 20795763, 22673634, 23056803, 24174003, 24368769, 25265553, 25850178
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			3847554 is a term because 3847554 = 2^4 + 13^4 + 29^4 + 42^4  = 2^4 + 21^4 + 22^4 + 43^4  = 6^4 + 11^4 + 17^4 + 44^4  = 6^4 + 31^4 + 32^4 + 37^4  = 9^4 + 29^4 + 32^4 + 38^4  = 13^4 + 26^4 + 32^4 + 39^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A345083 Numbers that are the sum of three third powers in six or more ways.

Original entry on oeis.org

1296378, 1371735, 1409400, 1614185, 1824040, 1885248, 2016496, 2101464, 2302028, 2305395, 2542968, 2562624, 2851848, 2889216, 2974392, 2988441, 3185792, 3380833, 3681280, 3689496, 3706984, 3775680, 3906657, 4109832, 4123008, 4142683, 4422592, 4525632, 4783680
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Examples

			1296378 is a term because 1296378 = 3^3 + 75^3 + 94^3  = 8^3 + 32^3 + 107^3  = 20^3 + 76^3 + 93^3  = 30^3 + 58^3 + 101^3  = 32^3 + 80^3 + 89^3  = 59^3 + 74^3 + 86^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A344364 Numbers that are the sum of three fourth powers in five or more ways.

Original entry on oeis.org

292965218, 779888018, 1010431058, 1110995522, 1234349298, 1289202642, 1500533762, 1665914642, 1948502738, 2158376402, 2373191618, 2636686962, 2689817858, 2935465442, 3019732898, 3205282178, 3642994082, 3831800882, 4162186322, 4324686002, 4687443488, 5064808658
Offset: 1

Views

Author

Sean A. Irvine, May 15 2021

Keywords

Examples

			292965218 is a member of this sequence because 292965218 = 2^4 + 109^4 + 111^4 = 21^4 + 98^4 + 119^4 = 27^4 + 94^4 + 121^4 = 34^4 + 89^4 + 123^4 = 49^4 + 77^4 + 126^4 = 61^4 + 66^4 + 127^4 (actually has 6 representations, so is a member of this sequence but not of A344365).
1234349298 is a member of this sequence because 1234349298 = 7^4 + 154^4 + 161^4 = 26^4 + 143^4 + 169^4 = 61^4 + 118^4 + 179^4 = 74^4 + 107^4 + 181^4 = 91^4 + 91^4 + 182^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 5])
    for x in range(len(rets)):
        print(rets[x])

A344648 Numbers that are the sum of three fourth powers in exactly six ways.

Original entry on oeis.org

292965218, 1010431058, 1110995522, 1500533762, 1665914642, 2158376402, 2373191618, 2636686962, 2689817858, 3019732898, 3205282178, 3642994082, 3831800882, 4324686002, 4687443488, 5064808658, 5175310322, 6317554418, 6450435362, 6720346178, 7018992162, 7635761042, 7781780258
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Comments

Differs from A344647 at term 2 because 779888018 = 3^4 + 139^4 + 142^4 = 9^4 + 38^4 + 167^4 = 14^4 + 133^4 + 147^4 = 43^4 + 114^4 + 157^4 = 47^4 + 111^4 + 158^4 = 63^4 + 98^4 + 161^4 = 73^4 + 89^4 + 162^4.

Examples

			1010431058 is a term because 1010431058 = 13^4 + 143^4 + 156^4 = 31^4 + 132^4 + 163^4 = 44^4 + 123^4 + 167^4 = 52^4 + 117^4 + 169^4 = 69^4 + 103^4 + 172^4 = 81^4 + 92^4 + 173^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 500)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 6])
    for x in range(len(rets)):
        print(rets[x])

A344729 Numbers that are the sum of three fourth powers in seven or more ways.

Original entry on oeis.org

779888018, 5745705602, 8185089458, 11054952818, 12478208288, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 33038379458, 37314202562, 38214512882, 41923075922, 46543615202, 49511121842, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63170929458, 63429959138, 71035097042, 71447292098, 73526154338, 73665805122, 81629817458
Offset: 1

Views

Author

David Consiglio, Jr., May 27 2021

Keywords

Examples

			779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-5 of 5 results.