A344904
Numbers that are the sum of four fourth powers in six or more ways.
Original entry on oeis.org
3847554, 5624739, 6044418, 6576339, 6593538, 6899603, 9851058, 10456338, 11645394, 12378018, 13155858, 13638738, 16020018, 16408434, 16990803, 19081089, 20622338, 20649603, 20755218, 20795763, 22673634, 23056803, 24174003, 24368769, 25265553, 25850178
Offset: 1
3847554 is a term because 3847554 = 2^4 + 13^4 + 29^4 + 42^4 = 2^4 + 21^4 + 22^4 + 43^4 = 6^4 + 11^4 + 17^4 + 44^4 = 6^4 + 31^4 + 32^4 + 37^4 = 9^4 + 29^4 + 32^4 + 38^4 = 13^4 + 26^4 + 32^4 + 39^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A345083
Numbers that are the sum of three third powers in six or more ways.
Original entry on oeis.org
1296378, 1371735, 1409400, 1614185, 1824040, 1885248, 2016496, 2101464, 2302028, 2305395, 2542968, 2562624, 2851848, 2889216, 2974392, 2988441, 3185792, 3380833, 3681280, 3689496, 3706984, 3775680, 3906657, 4109832, 4123008, 4142683, 4422592, 4525632, 4783680
Offset: 1
1296378 is a term because 1296378 = 3^3 + 75^3 + 94^3 = 8^3 + 32^3 + 107^3 = 20^3 + 76^3 + 93^3 = 30^3 + 58^3 + 101^3 = 32^3 + 80^3 + 89^3 = 59^3 + 74^3 + 86^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A344364
Numbers that are the sum of three fourth powers in five or more ways.
Original entry on oeis.org
292965218, 779888018, 1010431058, 1110995522, 1234349298, 1289202642, 1500533762, 1665914642, 1948502738, 2158376402, 2373191618, 2636686962, 2689817858, 2935465442, 3019732898, 3205282178, 3642994082, 3831800882, 4162186322, 4324686002, 4687443488, 5064808658
Offset: 1
292965218 is a member of this sequence because 292965218 = 2^4 + 109^4 + 111^4 = 21^4 + 98^4 + 119^4 = 27^4 + 94^4 + 121^4 = 34^4 + 89^4 + 123^4 = 49^4 + 77^4 + 126^4 = 61^4 + 66^4 + 127^4 (actually has 6 representations, so is a member of this sequence but not of A344365).
1234349298 is a member of this sequence because 1234349298 = 7^4 + 154^4 + 161^4 = 26^4 + 143^4 + 169^4 = 61^4 + 118^4 + 179^4 = 74^4 + 107^4 + 181^4 = 91^4 + 91^4 + 182^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 500)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
A344648
Numbers that are the sum of three fourth powers in exactly six ways.
Original entry on oeis.org
292965218, 1010431058, 1110995522, 1500533762, 1665914642, 2158376402, 2373191618, 2636686962, 2689817858, 3019732898, 3205282178, 3642994082, 3831800882, 4324686002, 4687443488, 5064808658, 5175310322, 6317554418, 6450435362, 6720346178, 7018992162, 7635761042, 7781780258
Offset: 1
1010431058 is a term because 1010431058 = 13^4 + 143^4 + 156^4 = 31^4 + 132^4 + 163^4 = 44^4 + 123^4 + 167^4 = 52^4 + 117^4 + 169^4 = 69^4 + 103^4 + 172^4 = 81^4 + 92^4 + 173^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 500)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
A344729
Numbers that are the sum of three fourth powers in seven or more ways.
Original entry on oeis.org
779888018, 5745705602, 8185089458, 11054952818, 12478208288, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 33038379458, 37314202562, 38214512882, 41923075922, 46543615202, 49511121842, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63170929458, 63429959138, 71035097042, 71447292098, 73526154338, 73665805122, 81629817458
Offset: 1
779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments