A344921
Numbers that are the sum of four fourth powers in exactly six ways.
Original entry on oeis.org
3847554, 5624739, 6044418, 6593538, 6899603, 9851058, 10456338, 11645394, 12378018, 13638738, 16990803, 19081089, 20622338, 20649603, 20755218, 20795763, 24174003, 24368769, 25265553, 25850178, 25899058, 28470339, 29195154, 30295539, 30534018, 30623394
Offset: 1
3847554 is a term because 3847554 = 2^4 + 13^4 + 29^4 + 42^4 = 2^4 + 21^4 + 22^4 + 43^4 = 6^4 + 11^4 + 17^4 + 44^4 = 6^4 + 31^4 + 32^4 + 37^4 = 9^4 + 29^4 + 32^4 + 38^4 = 13^4 + 26^4 + 32^4 + 39^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
A344365
Numbers that are the sum of three fourth powers in exactly five ways.
Original entry on oeis.org
1234349298, 1289202642, 1948502738, 2935465442, 4162186322, 5632212978, 7360969778, 8657437698, 8753497298, 11079947522, 15784025138, 17536524642, 19749588768, 20627242272, 21318234098, 31176043808, 35240346162, 37459676898, 39912730578, 42901649042
Offset: 1
1234349298 is a member of this sequence because 1234349298 = 7^4 + 154^4 + 161^4 = 26^4 + 143^4 + 169^4 = 61^4 + 118^4 + 179^4 = 74^4 + 107^4 + 181^4 = 91^4 + 91^4 + 182^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 500)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 5])
for x in range(len(rets)):
print(rets[x])
A344647
Numbers that are the sum of three fourth powers in six or more ways.
Original entry on oeis.org
292965218, 779888018, 1010431058, 1110995522, 1500533762, 1665914642, 2158376402, 2373191618, 2636686962, 2689817858, 3019732898, 3205282178, 3642994082, 3831800882, 4324686002, 4687443488, 5064808658, 5175310322, 5745705602, 6317554418, 6450435362, 6720346178, 7018992162
Offset: 1
1010431058 is a term because 1010431058 = 13^4 + 143^4 + 156^4 = 31^4 + 132^4 + 163^4 = 44^4 + 123^4 + 167^4 = 52^4 + 117^4 + 169^4 = 69^4 + 103^4 + 172^4 = 81^4 + 92^4 + 173^4
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 500)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 6])
for x in range(len(rets)):
print(rets[x])
A344730
Numbers that are the sum of three fourth powers in exactly seven ways.
Original entry on oeis.org
779888018, 12478208288, 33038379458, 63170929458, 114872872562, 199651332608, 329296962722, 393006728738, 419200136082, 487430011250, 528614071328, 959702600738, 1010734871328, 1369390032738, 1502549262242, 1525400097858, 1653983981762, 1668273965442, 1756039197458, 1793250582818, 1837965960992, 1912768493202
Offset: 1
779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A345084
Numbers that are the sum of three third powers in exactly six ways.
Original entry on oeis.org
1296378, 1371735, 1409400, 1614185, 1824040, 1885248, 2101464, 2302028, 2305395, 2542968, 2851848, 2889216, 2974392, 2988441, 3185792, 3380833, 3681280, 3689496, 3706984, 3775680, 3906657, 4109832, 4123008, 4142683, 4422592, 4842872, 4952312, 5005125, 5023656
Offset: 1
1296378 is a term because 1296378 = 3^3 + 75^3 + 94^3 = 8^3 + 32^3 + 107^3 = 20^3 + 76^3 + 93^3 = 30^3 + 58^3 + 101^3 = 32^3 + 80^3 + 89^3 = 59^3 + 74^3 + 86^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments