cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345146 Numbers that are the sum of four third powers in nine or more ways.

Original entry on oeis.org

21896, 36225, 42120, 46683, 46872, 48321, 48825, 50806, 50904, 51408, 51480, 51506, 51688, 52208, 52416, 53200, 53865, 54971, 55575, 56385, 57113, 58338, 58968, 59059, 60480, 60515, 60984, 62244, 62433, 65303, 66024, 66276, 66339, 66430, 67158, 67536, 67851
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A341891 Numbers that are the sum of five fourth powers in nine or more ways.

Original entry on oeis.org

619090, 775714, 954979, 1100579, 1179379, 1186834, 1205539, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1574850, 1699234, 1713859, 1734899, 1801459, 1839874, 1858594, 1863859, 1877394, 1880850, 1882579, 1950355, 1951650
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Examples

			619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
       =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
       =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
       =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
       =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
       =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
       =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
       =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
       = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A344924 Numbers that are the sum of four fourth powers in eight or more ways.

Original entry on oeis.org

13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 328118259
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4  = 3^4 + 6^4 + 21^4 + 60^4  = 10^4 + 18^4 + 31^4 + 59^4  = 12^4 + 27^4 + 45^4 + 54^4  = 15^4 + 44^4 + 46^4 + 47^4  = 18^4 + 25^4 + 41^4 + 56^4  = 29^4 + 30^4 + 44^4 + 53^4  = 35^4 + 36^4 + 38^4 + 53^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A344927 Numbers that are the sum of four fourth powers in exactly nine ways.

Original entry on oeis.org

328118259, 385202034, 395613234, 489597858, 625839858, 641398338, 674511618, 693239634, 699598578, 722302434, 779889314, 780278643, 782999714, 791204514, 792005379, 797405714, 797935698, 805299699, 815120658, 822938754, 851527314, 857962914, 870861618
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344926 at term 5 because 328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.

Examples

			328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4  = 8^4 + 79^4 + 93^4 + 121^4  = 18^4 + 79^4 + 97^4 + 119^4  = 21^4 + 77^4 + 98^4 + 119^4  = 27^4 + 77^4 + 94^4 + 121^4  = 34^4 + 77^4 + 89^4 + 123^4  = 46^4 + 57^4 + 103^4 + 119^4  = 49^4 + 77^4 + 77^4 + 126^4  = 61^4 + 66^4 + 77^4 + 127^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344750 Numbers that are the sum of three fourth powers in nine or more ways.

Original entry on oeis.org

49511121842, 105760443698, 131801075042, 187758243218, 253590205778, 281539574498, 319889609522, 364765611938, 401069383442, 445600096578, 510334859762, 541692688082, 601395185762, 615665999858, 703409488418, 730871934338, 749472385298, 792177949472
Offset: 1

Views

Author

David Consiglio, Jr., May 28 2021

Keywords

Examples

			105760443698 is a term because 105760443698 = 7^4 + 476^4 + 483^4  = 51^4 + 452^4 + 503^4  = 76^4 + 437^4 + 513^4  = 107^4 + 417^4 + 524^4  = 133^4 + 399^4 + 532^4  = 199^4 + 348^4 + 547^4  = 212^4 + 337^4 + 549^4  = 228^4 + 323^4 + 551^4  = 252^4 + 301^4 + 553^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A344928 Numbers that are the sum of four fourth powers in ten or more ways.

Original entry on oeis.org

592417938, 677125218, 780595299, 781388643, 803898018, 806692194, 937239954, 940415058, 980421939, 1164012003, 1269819378, 1355899923, 1403089314, 1488645939, 1539221154, 1599073938, 1635878754, 1657885698, 1666044963, 1701067683, 1734489603, 1758151458
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4  = 7^4 + 11^4 + 20^4 + 156^4  = 10^4 + 17^4 + 17^4 + 156^4  = 12^4 + 112^4 + 115^4 + 127^4  = 15^4 + 86^4 + 107^4 + 142^4  = 21^4 + 49^4 + 70^4 + 154^4  = 25^4 + 107^4 + 112^4 + 132^4  = 26^4 + 45^4 + 71^4 + 154^4  = 28^4 + 105^4 + 112^4 + 133^4  = 63^4 + 77^4 + 112^4 + 140^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 03 2021
Showing 1-6 of 6 results.