cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345185 Numbers that are the sum of five third powers in nine or more ways.

Original entry on oeis.org

5860, 6112, 6138, 6462, 6497, 6588, 6651, 6859, 6947, 7001, 7038, 7057, 7064, 7099, 7190, 7316, 7328, 7372, 7433, 7561, 7587, 7703, 7759, 7841, 7902, 8056, 8163, 8289, 8352, 8371, 8443, 8506, 8560, 8569, 8630, 8632, 8758, 8928, 8991, 9017, 9045, 9080, 9099
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			6112 is a term because 6112 = 1^3 + 2^3 + 9^3 + 11^3 + 14^3  = 1^3 + 3^3 + 7^3 + 12^3 + 14^3  = 1^3 + 6^3 + 6^3 + 7^3 + 16^3  = 2^3 + 2^3 + 9^3 + 9^3 + 15^3  = 2^3 + 3^3 + 5^3 + 11^3 + 15^3  = 2^3 + 8^3 + 9^3 + 9^3 + 14^3  = 3^3 + 3^3 + 3^3 + 4^3 + 17^3  = 3^3 + 5^3 + 8^3 + 11^3 + 14^3  = 8^3 + 8^3 + 8^3 + 11^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A345566 Numbers that are the sum of six fourth powers in nine or more ways.

Original entry on oeis.org

88595, 122915, 132546, 134931, 144835, 146450, 151556, 161475, 162355, 162755, 170275, 171555, 171795, 172036, 172835, 173075, 177380, 177716, 180770, 183540, 183620, 184835, 185315, 185555, 187700, 187715, 190100, 190211, 193635, 195380, 195780, 196435
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			122915 is a term because 122915 = 1^4 + 3^4 + 6^4 + 9^4 + 10^4 + 18^4 = 1^4 + 4^4 + 7^4 + 8^4 + 15^4 + 16^4 = 1^4 + 7^4 + 9^4 + 10^4 + 14^4 + 16^4 = 2^4 + 3^4 + 4^4 + 5^4 + 14^4 + 17^4 = 2^4 + 4^4 + 5^4 + 7^4 + 11^4 + 18^4 = 2^4 + 9^4 + 9^4 + 12^4 + 14^4 + 15^4 = 3^4 + 5^4 + 6^4 + 6^4 + 11^4 + 18^4 = 3^4 + 8^4 + 10^4 + 11^4 + 13^4 + 16^4 = 5^4 + 6^4 + 7^4 + 11^4 + 14^4 + 16^4 = 8^4 + 8^4 + 9^4 + 10^4 + 11^4 + 17^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 9])
        for x in range(len(rets)):
            print(rets[x])

A341892 Numbers that are the sum of five fourth powers in exactly nine ways.

Original entry on oeis.org

619090, 775714, 1100579, 1179379, 1186834, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1699234, 1734899, 1839874, 1858594, 1880850, 1950355, 1951650, 1978915, 2044819, 2052899, 2069955, 2085139, 2101779, 2119459, 2133234
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Comments

Differs from A341781 at term 3 because
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4.

Examples

			619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
       =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
       =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
       =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
       =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
       =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
       =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
       =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
       = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344926 Numbers that are the sum of four fourth powers in nine or more ways.

Original entry on oeis.org

328118259, 385202034, 395613234, 489597858, 592417938, 625839858, 641398338, 674511618, 677125218, 693239634, 699598578, 722302434, 779889314, 780278643, 780595299, 781388643, 782999714, 791204514, 792005379, 797405714, 797935698, 803898018, 805299699
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4  = 8^4 + 79^4 + 93^4 + 121^4  = 18^4 + 79^4 + 97^4 + 119^4  = 21^4 + 77^4 + 98^4 + 119^4  = 27^4 + 77^4 + 94^4 + 121^4  = 34^4 + 77^4 + 89^4 + 123^4  = 46^4 + 57^4 + 103^4 + 119^4  = 49^4 + 77^4 + 77^4 + 126^4  = 61^4 + 66^4 + 77^4 + 127^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A344944 Numbers that are the sum of five fourth powers in eight or more ways.

Original entry on oeis.org

534130, 619090, 654754, 663155, 729219, 737459, 742770, 758354, 775714, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 954979, 1009954, 1055619, 1083955, 1099459, 1100579, 1101859, 1103554, 1106019, 1157634, 1167794, 1179379, 1180003, 1186834
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A341897 Numbers that are the sum of five fourth powers in ten or more ways.

Original entry on oeis.org

954979, 1205539, 1574850, 1713859, 1801459, 1863859, 1877394, 1882579, 2071939, 2109730, 2138419, 2142594, 2157874, 2225859, 2288179, 2419954, 2492434, 2495939, 2605314, 2663539, 2711394, 2784499, 2835939, 2847394, 2849859, 2880994, 2919154, 2924674, 3007474
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Examples

			954979 =  1^4 +  2^4 + 11^4 + 19^4 + 30^4
       =  1^4 +  7^4 + 18^4 + 25^4 + 26^4
       =  3^4 +  8^4 + 17^4 + 20^4 + 29^4
       =  4^4 +  8^4 + 13^4 + 25^4 + 27^4
       =  4^4 +  9^4 + 10^4 + 11^4 + 31^4
       =  6^4 +  6^4 + 15^4 + 21^4 + 29^4
       =  7^4 + 10^4 + 18^4 + 19^4 + 29^4
       = 11^4 + 11^4 + 20^4 + 22^4 + 27^4
       = 16^4 + 17^4 + 17^4 + 24^4 + 25^4
       = 18^4 + 19^4 + 20^4 + 23^4 + 23^4
so 954979 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.