cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A341892 Numbers that are the sum of five fourth powers in exactly nine ways.

Original entry on oeis.org

619090, 775714, 1100579, 1179379, 1186834, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1699234, 1734899, 1839874, 1858594, 1880850, 1950355, 1951650, 1978915, 2044819, 2052899, 2069955, 2085139, 2101779, 2119459, 2133234
Offset: 1

Views

Author

David Consiglio, Jr., Jun 04 2021

Keywords

Comments

Differs from A341781 at term 3 because
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4.

Examples

			619090 =  1^4 +  2^4 + 18^4 + 22^4 + 23^4
       =  1^4 +  3^4 +  4^4 +  8^4 + 28^4
       =  1^4 + 11^4 + 14^4 + 22^4 + 24^4
       =  2^4 +  2^4 +  8^4 + 17^4 + 27^4
       =  2^4 + 13^4 + 13^4 + 18^4 + 26^4
       =  3^4 +  6^4 + 12^4 + 16^4 + 27^4
       =  4^4 + 12^4 + 14^4 + 23^4 + 23^4
       =  9^4 + 12^4 + 16^4 + 21^4 + 24^4
       = 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344925 Numbers that are the sum of four fourth powers in exactly eight ways.

Original entry on oeis.org

13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 331957458
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344924 at term 24 because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.

Examples

			13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4  = 3^4 + 6^4 + 21^4 + 60^4  = 10^4 + 18^4 + 31^4 + 59^4  = 12^4 + 27^4 + 45^4 + 54^4  = 15^4 + 44^4 + 46^4 + 47^4  = 18^4 + 25^4 + 41^4 + 56^4  = 29^4 + 30^4 + 44^4 + 53^4  = 35^4 + 36^4 + 38^4 + 53^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A344926 Numbers that are the sum of four fourth powers in nine or more ways.

Original entry on oeis.org

328118259, 385202034, 395613234, 489597858, 592417938, 625839858, 641398338, 674511618, 677125218, 693239634, 699598578, 722302434, 779889314, 780278643, 780595299, 781388643, 782999714, 791204514, 792005379, 797405714, 797935698, 803898018, 805299699
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4  = 8^4 + 79^4 + 93^4 + 121^4  = 18^4 + 79^4 + 97^4 + 119^4  = 21^4 + 77^4 + 98^4 + 119^4  = 27^4 + 77^4 + 94^4 + 121^4  = 34^4 + 77^4 + 89^4 + 123^4  = 46^4 + 57^4 + 103^4 + 119^4  = 49^4 + 77^4 + 77^4 + 126^4  = 61^4 + 66^4 + 77^4 + 127^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A345154 Numbers that are the sum of four third powers in exactly nine ways.

Original entry on oeis.org

42120, 46683, 50806, 50904, 51408, 51480, 51688, 52208, 53865, 54971, 56385, 57113, 60515, 60984, 62433, 65303, 66276, 66339, 66430, 67158, 69048, 69832, 69930, 71162, 72072, 72520, 72576, 72800, 73017, 77714, 77903, 79345, 79667, 79849, 80066, 80073, 81207
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345146 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344751 Numbers that are the sum of three fourth powers in exactly nine ways.

Original entry on oeis.org

105760443698, 131801075042, 187758243218, 253590205778, 319889609522, 445600096578, 510334859762, 601395185762, 615665999858, 730871934338, 749472385298, 855952663202, 856722174098, 951843993282, 1157106866258, 1186209675378, 1290443616098, 1455023522498
Offset: 1

Views

Author

David Consiglio, Jr., May 28 2021

Keywords

Comments

Differs from A344750 at term 1 because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.

Examples

			105760443698 is a term because 105760443698 = 7^4 + 476^4 + 483^4  = 51^4 + 452^4 + 503^4  = 76^4 + 437^4 + 513^4  = 107^4 + 417^4 + 524^4  = 133^4 + 399^4 + 532^4  = 199^4 + 348^4 + 547^4  = 212^4 + 337^4 + 549^4  = 228^4 + 323^4 + 551^4  = 252^4 + 301^4 + 553^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344929 Numbers that are the sum of four fourth powers in exactly ten ways.

Original entry on oeis.org

592417938, 806692194, 940415058, 980421939, 1269819378, 1355899923, 1488645939, 1599073938, 1635878754, 1657885698, 1666044963, 1758151458, 1797373314, 1813434483, 1991146899, 2064726483, 2198975058, 2246905683, 2266525314, 2302589298, 2302698258, 2502041283
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344928 at term 2 because 677125218 = 2^4 + 109^4 + 111^4 + 140^4 = 21^4 + 98^4 + 119^4 + 140^4 = 27^4 + 94^4 + 121^4 + 140^4 = 28^4 + 35^4 + 42^4 + 161^4 = 34^4 + 89^4 + 123^4 + 140^4 = 36^4 + 98^4 + 109^4 + 145^4 = 44^4 + 75^4 + 128^4 + 139^4 = 49^4 + 77^4 + 126^4 + 140^4 = 61^4 + 66^4 + 127^4 + 140^4 = 70^4 + 119^4 + 119^4 + 126^4 = 75^4 + 76^4 + 98^4 + 151^4.

Examples

			592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4  = 7^4 + 11^4 + 20^4 + 156^4  = 10^4 + 17^4 + 17^4 + 156^4  = 12^4 + 112^4 + 115^4 + 127^4  = 15^4 + 86^4 + 107^4 + 142^4  = 21^4 + 49^4 + 70^4 + 154^4  = 25^4 + 107^4 + 112^4 + 132^4  = 26^4 + 45^4 + 71^4 + 154^4  = 28^4 + 105^4 + 112^4 + 133^4  = 63^4 + 77^4 + 112^4 + 140^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 03 2021
Showing 1-6 of 6 results.