cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345146 Numbers that are the sum of four third powers in nine or more ways.

Original entry on oeis.org

21896, 36225, 42120, 46683, 46872, 48321, 48825, 50806, 50904, 51408, 51480, 51506, 51688, 52208, 52416, 53200, 53865, 54971, 55575, 56385, 57113, 58338, 58968, 59059, 60480, 60515, 60984, 62244, 62433, 65303, 66024, 66276, 66339, 66430, 67158, 67536, 67851
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A344927 Numbers that are the sum of four fourth powers in exactly nine ways.

Original entry on oeis.org

328118259, 385202034, 395613234, 489597858, 625839858, 641398338, 674511618, 693239634, 699598578, 722302434, 779889314, 780278643, 782999714, 791204514, 792005379, 797405714, 797935698, 805299699, 815120658, 822938754, 851527314, 857962914, 870861618
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344926 at term 5 because 328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.

Examples

			328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4  = 8^4 + 79^4 + 93^4 + 121^4  = 18^4 + 79^4 + 97^4 + 119^4  = 21^4 + 77^4 + 98^4 + 119^4  = 27^4 + 77^4 + 94^4 + 121^4  = 34^4 + 77^4 + 89^4 + 123^4  = 46^4 + 57^4 + 103^4 + 119^4  = 49^4 + 77^4 + 77^4 + 126^4  = 61^4 + 66^4 + 77^4 + 127^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345153 Numbers that are the sum of four third powers in exactly eight ways.

Original entry on oeis.org

27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 40105, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46900, 47600, 49042, 50112, 50689, 51058, 51597, 51805, 52227, 52264, 52507, 53144, 54271, 54873, 55692, 55790, 56240, 58032, 58221, 58312
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345152 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3  = 1^3 + 16^3 + 17^3 + 26^3  = 2^3 + 12^3 + 21^3 + 25^3  = 3^3 + 3^3 + 14^3 + 29^3  = 4^3 + 17^3 + 21^3 + 23^3  = 5^3 + 11^3 + 15^3 + 28^3  = 6^3 + 6^3 + 22^3 + 25^3  = 7^3 + 14^3 + 18^3 + 26^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345186 Numbers that are the sum of five third powers in exactly nine ways.

Original entry on oeis.org

6112, 6138, 6462, 6497, 7001, 7038, 7057, 7064, 7099, 7190, 7316, 7328, 7372, 7433, 7561, 7587, 7703, 7759, 7841, 7902, 8163, 8352, 8443, 8560, 8630, 8632, 8928, 8991, 9017, 9136, 9143, 9171, 9288, 9316, 9379, 9505, 9566, 9647, 9658, 9675, 9684, 9745, 9773
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345185 at term 1 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3.

Examples

			6112 is a term because 6112 = 1^3 + 2^3 + 9^3 + 11^3 + 14^3  = 1^3 + 3^3 + 7^3 + 12^3 + 14^3  = 1^3 + 6^3 + 6^3 + 7^3 + 16^3  = 2^3 + 2^3 + 9^3 + 9^3 + 15^3  = 2^3 + 3^3 + 5^3 + 11^3 + 15^3  = 2^3 + 8^3 + 9^3 + 9^3 + 14^3  = 3^3 + 3^3 + 3^3 + 4^3 + 17^3  = 3^3 + 5^3 + 8^3 + 11^3 + 14^3  = 8^3 + 8^3 + 8^3 + 11^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345120 Numbers that are the sum of three third powers in exactly nine ways.

Original entry on oeis.org

14926248, 16819704, 20168784, 44946000, 45580536, 54042624, 59768064, 62099136, 66203136, 67956624, 69393024, 78008832, 78716448, 79539832, 80621568, 80996544, 89354448, 90757584, 99616392, 100088568, 101352168, 101943360, 112216896, 112720896, 114306984
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Comments

Differs from A345119 at term 4 because 34012224 = 35^3 + 215^3 + 287^3 = 38^3 + 152^3 + 311^3 = 40^3 + 113^3 + 318^3 = 44^3 + 245^3 + 266^3 = 71^3 + 113^3 + 317^3 = 99^3 + 191^3 + 295^3 = 101^3 + 226^3 + 276^3 = 117^3 + 185^3 + 295^3 = 161^3 + 215^3 + 269^3 = 172^3 + 213^3 + 266^3.

Examples

			14926248 is a term because 14926248 = 2^3 + 33^3 + 245^3  = 11^3 + 185^3 + 203^3  = 14^3 + 32^3 + 245^3  = 50^3 + 113^3 + 236^3  = 71^3 + 89^3 + 239^3  = 74^3 + 189^3 + 196^3  = 89^3 + 185^3 + 197^3  = 98^3 + 148^3 + 219^3  = 105^3 + 149^3 + 217^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345156 Numbers that are the sum of four third powers in exactly ten ways.

Original entry on oeis.org

21896, 36225, 48825, 51506, 52416, 53200, 58338, 58968, 60480, 66024, 67851, 70434, 70525, 71155, 72819, 76923, 78624, 78912, 85995, 87507, 88641, 90181, 90783, 91728, 93555, 97552, 98280, 98560, 99008, 99225, 99792, 100170, 103040, 104104, 104265, 104958
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345155 at term 3 because 46872 = 1^3 + 16^3 + 22^3 + 30^3 = 2^3 + 11^3 + 17^3 + 33^3 = 3^3 + 3^3 + 4^3 + 35^3 = 3^3 + 4^3 + 26^3 + 29^3 = 3^3 + 5^3 + 23^3 + 31^3 = 4^3 + 10^3 + 24^3 + 30^3 = 5^3 + 17^3 + 23^3 + 29^3 = 6^3 + 10^3 + 20^3 + 32^3 = 11^3 + 11^3 + 21^3 + 31^3 = 11^3 + 14^3 + 17^3 + 32^3 = 19^3 + 21^3 + 21^3 + 25^3.

Examples

			21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3  = 2^3 + 2^3 + 12^3 + 26^3  = 2^3 + 3^3 + 19^3 + 23^3  = 2^3 + 5^3 + 15^3 + 25^3  = 3^3 + 10^3 + 16^3 + 24^3  = 3^3 + 17^3 + 19^3 + 19^3  = 4^3 + 6^3 + 20^3 + 22^3  = 5^3 + 8^3 + 14^3 + 25^3  = 7^3 + 11^3 + 17^3 + 23^3  = 8^3 + 9^3 + 19^3 + 22^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.