cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345152 Numbers that are the sum of four third powers in eight or more ways.

Original entry on oeis.org

21896, 27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 36225, 40105, 42120, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46683, 46872, 46900, 47600, 48321, 48825, 49042, 50112, 50689, 50806, 50904, 51058, 51408, 51480, 51506, 51597, 51688
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3  = 1^3 + 16^3 + 17^3 + 26^3  = 2^3 + 12^3 + 21^3 + 25^3  = 3^3 + 3^3 + 14^3 + 29^3  = 4^3 + 17^3 + 21^3 + 23^3  = 5^3 + 11^3 + 15^3 + 28^3  = 6^3 + 6^3 + 22^3 + 25^3  = 7^3 + 14^3 + 18^3 + 26^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A344925 Numbers that are the sum of four fourth powers in exactly eight ways.

Original entry on oeis.org

13155858, 26421474, 35965458, 39803778, 98926434, 128198994, 143776179, 156279618, 210493728, 237073554, 248075538, 255831858, 257931378, 269965938, 270289698, 292967619, 293579874, 295880274, 300120003, 301080243, 302115843, 305670834, 309742434, 331957458
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Comments

Differs from A344924 at term 24 because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.

Examples

			13155858 is a term because 13155858 = 1^4 + 16^4 + 19^4 + 60^4  = 3^4 + 6^4 + 21^4 + 60^4  = 10^4 + 18^4 + 31^4 + 59^4  = 12^4 + 27^4 + 45^4 + 54^4  = 15^4 + 44^4 + 46^4 + 47^4  = 18^4 + 25^4 + 41^4 + 56^4  = 29^4 + 30^4 + 44^4 + 53^4  = 35^4 + 36^4 + 38^4 + 53^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345088 Numbers that are the sum of three third powers in exactly eight ways.

Original entry on oeis.org

2562624, 5618250, 6525000, 6755328, 7374375, 12742920, 13581352, 14027112, 14288373, 18443160, 20500992, 22783032, 23113728, 25305048, 26936064, 27131840, 29515968, 30205440, 32835375, 38269440, 39317832, 39339000, 40189248, 42144192, 42183504, 43077952
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Comments

Differs from A345087 at term 10 because 14926248 = 2^3 + 33^3 + 245^3 = 11^3 + 185^3 + 203^3 = 14^3 + 32^3 + 245^3 = 50^3 + 113^3 + 236^3 = 71^3 + 89^3 + 239^3 = 74^3 + 189^3 + 196^3 = 89^3 + 185^3 + 197^3 = 98^3 + 148^3 + 219^3 = 105^3 + 149^3 + 217^3.

Examples

			2562624 is a term because 2562624 = 7^3 + 35^3 + 135^3  = 7^3 + 63^3 + 131^3  = 11^3 + 99^3 + 115^3  = 16^3 + 45^3 + 134^3  = 29^3 + 102^3 + 112^3  = 35^3 + 59^3 + 131^3  = 50^3 + 84^3 + 121^3  = 68^3 + 71^3 + 122^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345151 Numbers that are the sum of four third powers in exactly seven ways.

Original entry on oeis.org

13104, 18928, 19376, 20755, 21203, 22743, 24544, 24570, 24787, 25172, 25928, 27755, 27846, 28917, 29582, 31031, 31248, 31528, 32858, 34056, 34713, 35289, 35317, 35441, 35497, 35712, 36190, 36288, 36610, 36890, 36946, 38080, 39221, 39440, 39464, 39851, 39942
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345150 at term 6 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3  = 1^3 + 11^3 + 14^3 + 19^3  = 2^3 + 9^3 + 15^3 + 19^3  = 4^3 + 6^3 + 14^3 + 20^3  = 4^3 + 9^3 + 10^3 + 21^3  = 5^3 + 7^3 + 11^3 + 21^3  = 8^3 + 9^3 + 14^3 + 19^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A345154 Numbers that are the sum of four third powers in exactly nine ways.

Original entry on oeis.org

42120, 46683, 50806, 50904, 51408, 51480, 51688, 52208, 53865, 54971, 56385, 57113, 60515, 60984, 62433, 65303, 66276, 66339, 66430, 67158, 69048, 69832, 69930, 71162, 72072, 72520, 72576, 72800, 73017, 77714, 77903, 79345, 79667, 79849, 80066, 80073, 81207
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345146 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345184 Numbers that are the sum of five third powers in exactly eight ways.

Original entry on oeis.org

4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5914, 6075, 6202, 6499, 6560, 6616, 6642, 6677, 6833, 6884, 7008, 7111, 7128, 7155, 7218, 7344, 7395, 7641, 7696, 7729, 7785, 7813, 7820, 7849, 7883, 8037, 8100, 8243, 8282, 8308, 8315
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345183 at term 13 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3.

Examples

			4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3  = 1^3 + 3^3 + 7^3 + 9^3 + 14^3  = 1^3 + 8^3 + 8^3 + 11^3 + 11^3  = 2^3 + 4^3 + 6^3 + 6^3 + 15^3  = 3^3 + 3^3 + 5^3 + 7^3 + 15^3  = 3^3 + 3^3 + 10^3 + 11^3 + 11^3  = 4^3 + 6^3 + 6^3 + 8^3 + 14^3  = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.