cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345087 Numbers that are the sum of three third powers in eight or more ways.

Original entry on oeis.org

2562624, 5618250, 6525000, 6755328, 7374375, 12742920, 13581352, 14027112, 14288373, 14926248, 16819704, 18443160, 20168784, 20500992, 22783032, 23113728, 25305048, 26936064, 27131840, 29515968, 30205440, 32835375, 34012224, 38269440, 39317832, 39339000
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Examples

			2562624 is a term because 2562624 = 7^3 + 35^3 + 135^3  = 7^3 + 63^3 + 131^3  = 11^3 + 99^3 + 115^3  = 16^3 + 45^3 + 134^3  = 29^3 + 102^3 + 112^3  = 35^3 + 59^3 + 131^3  = 50^3 + 84^3 + 121^3  = 68^3 + 71^3 + 122^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A345153 Numbers that are the sum of four third powers in exactly eight ways.

Original entry on oeis.org

27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 40105, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46900, 47600, 49042, 50112, 50689, 51058, 51597, 51805, 52227, 52264, 52507, 53144, 54271, 54873, 55692, 55790, 56240, 58032, 58221, 58312
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345152 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3  = 1^3 + 16^3 + 17^3 + 26^3  = 2^3 + 12^3 + 21^3 + 25^3  = 3^3 + 3^3 + 14^3 + 29^3  = 4^3 + 17^3 + 21^3 + 23^3  = 5^3 + 11^3 + 15^3 + 28^3  = 6^3 + 6^3 + 22^3 + 25^3  = 7^3 + 14^3 + 18^3 + 26^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A344738 Numbers that are the sum of three fourth powers in exactly eight ways.

Original entry on oeis.org

5745705602, 8185089458, 11054952818, 14355295682, 21789116258, 22247419922, 26839201298, 29428835618, 31861462178, 37314202562, 38214512882, 41923075922, 46543615202, 51711350418, 54438780578, 56255300738, 59223741122, 62862779042, 63429959138, 71035097042
Offset: 1

Views

Author

David Consiglio, Jr., May 27 2021

Keywords

Comments

Differs at term 14 because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.

Examples

			5745705602 is a term because 5745705602 = 3^4 + 230^4 + 233^4 = 25^4 + 218^4 + 243^4 = 43^4 + 207^4 + 250^4 = 58^4 + 197^4 + 255^4 = 85^4 + 177^4 + 262^4 = 90^4 + 173^4 + 263^4 = 102^4 + 163^4 + 265^4 = 122^4 + 145^4 + 267^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345085 Numbers that are the sum of three third powers in exactly seven ways.

Original entry on oeis.org

2016496, 4525632, 4783680, 5268024, 6366816, 7451352, 7457120, 8275392, 9063144, 9086104, 9931167, 10036872, 10266138, 10371024, 10973880, 12002472, 12452049, 12983517, 13639816, 13641480, 13818384, 13832729, 14090112, 15081984, 15212016, 15685704, 16131968
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Comments

Differs from A345086 at term 2 because 2562624 = 7^3 + 35^3 + 135^3 = 7^3 + 63^3 + 131^3 = 11^3 + 99^3 + 115^3 = 16^3 + 45^3 + 134^3 = 29^3 + 102^3 + 112^3 = 35^3 + 59^3 + 131^3 = 50^3 + 84^3 + 121^3 = 68^3 + 71^3 + 122^3.

Examples

			2016496 is a term because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A345120 Numbers that are the sum of three third powers in exactly nine ways.

Original entry on oeis.org

14926248, 16819704, 20168784, 44946000, 45580536, 54042624, 59768064, 62099136, 66203136, 67956624, 69393024, 78008832, 78716448, 79539832, 80621568, 80996544, 89354448, 90757584, 99616392, 100088568, 101352168, 101943360, 112216896, 112720896, 114306984
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Comments

Differs from A345119 at term 4 because 34012224 = 35^3 + 215^3 + 287^3 = 38^3 + 152^3 + 311^3 = 40^3 + 113^3 + 318^3 = 44^3 + 245^3 + 266^3 = 71^3 + 113^3 + 317^3 = 99^3 + 191^3 + 295^3 = 101^3 + 226^3 + 276^3 = 117^3 + 185^3 + 295^3 = 161^3 + 215^3 + 269^3 = 172^3 + 213^3 + 266^3.

Examples

			14926248 is a term because 14926248 = 2^3 + 33^3 + 245^3  = 11^3 + 185^3 + 203^3  = 14^3 + 32^3 + 245^3  = 50^3 + 113^3 + 236^3  = 71^3 + 89^3 + 239^3  = 74^3 + 189^3 + 196^3  = 89^3 + 185^3 + 197^3  = 98^3 + 148^3 + 219^3  = 105^3 + 149^3 + 217^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube.

Original entry on oeis.org

36, 1009, 12384, 82278, 746992, 5401404, 15685704, 26936064, 137763072, 251066304, 857520000, 618817536, 3032856000, 2050677000, 6100691904, 36013192704, 16405416000, 96569712000, 48805535232, 131243328000, 611996202000, 201153672000
Offset: 1

Views

Author

Gleb Ivanov, Aug 29 2021

Keywords

Comments

No cube should appear in two or more sums. 5104 = 15^3 + 10^3 + 9^3 = 15^3 + 12^3 + 1^3 = 16^3 + 10^3 + 2^3 is not a(3), because 15^3 appears in more than one sum.

Examples

			a(1) = 36 = 1^3 + 2^3 + 3^3.
a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3.
		

Crossrefs

Programs

  • Mathematica
    Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* Giorgos Kalogeropoulos, Sep 03 2021 *)

Extensions

a(13)-a(15) from Jon E. Schoenfield, Sep 02 2021
a(16)-a(22) from Gleb Ivanov, Sep 12 2021
Showing 1-6 of 6 results.