A345086
Numbers that are the sum of three third powers in seven or more ways.
Original entry on oeis.org
2016496, 2562624, 4525632, 4783680, 5268024, 5618250, 6366816, 6525000, 6755328, 7374375, 7451352, 7457120, 8275392, 9063144, 9086104, 9931167, 10036872, 10266138, 10371024, 10973880, 12002472, 12452049, 12742920, 12983517, 13581352, 13639816, 13641480
Offset: 1
2016496 is a term because 2016496 = 5^3 + 71^3 + 117^3 = 9^3 + 65^3 + 119^3 = 18^3 + 20^3 + 125^3 = 46^3 + 96^3 + 99^3 = 53^3 + 59^3 + 117^3 = 65^3 + 89^3 + 99^3 = 82^3 + 84^3 + 93^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 7])
for x in range(len(rets)):
print(rets[x])
A345088
Numbers that are the sum of three third powers in exactly eight ways.
Original entry on oeis.org
2562624, 5618250, 6525000, 6755328, 7374375, 12742920, 13581352, 14027112, 14288373, 18443160, 20500992, 22783032, 23113728, 25305048, 26936064, 27131840, 29515968, 30205440, 32835375, 38269440, 39317832, 39339000, 40189248, 42144192, 42183504, 43077952
Offset: 1
2562624 is a term because 2562624 = 7^3 + 35^3 + 135^3 = 7^3 + 63^3 + 131^3 = 11^3 + 99^3 + 115^3 = 16^3 + 45^3 + 134^3 = 29^3 + 102^3 + 112^3 = 35^3 + 59^3 + 131^3 = 50^3 + 84^3 + 121^3 = 68^3 + 71^3 + 122^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 8])
for x in range(len(rets)):
print(rets[x])
A345151
Numbers that are the sum of four third powers in exactly seven ways.
Original entry on oeis.org
13104, 18928, 19376, 20755, 21203, 22743, 24544, 24570, 24787, 25172, 25928, 27755, 27846, 28917, 29582, 31031, 31248, 31528, 32858, 34056, 34713, 35289, 35317, 35441, 35497, 35712, 36190, 36288, 36610, 36890, 36946, 38080, 39221, 39440, 39464, 39851, 39942
Offset: 1
13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3 = 1^3 + 11^3 + 14^3 + 19^3 = 2^3 + 9^3 + 15^3 + 19^3 = 4^3 + 6^3 + 14^3 + 20^3 = 4^3 + 9^3 + 10^3 + 21^3 = 5^3 + 7^3 + 11^3 + 21^3 = 8^3 + 9^3 + 14^3 + 19^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A344730
Numbers that are the sum of three fourth powers in exactly seven ways.
Original entry on oeis.org
779888018, 12478208288, 33038379458, 63170929458, 114872872562, 199651332608, 329296962722, 393006728738, 419200136082, 487430011250, 528614071328, 959702600738, 1010734871328, 1369390032738, 1502549262242, 1525400097858, 1653983981762, 1668273965442, 1756039197458, 1793250582818, 1837965960992, 1912768493202
Offset: 1
779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
A345084
Numbers that are the sum of three third powers in exactly six ways.
Original entry on oeis.org
1296378, 1371735, 1409400, 1614185, 1824040, 1885248, 2101464, 2302028, 2305395, 2542968, 2851848, 2889216, 2974392, 2988441, 3185792, 3380833, 3681280, 3689496, 3706984, 3775680, 3906657, 4109832, 4123008, 4142683, 4422592, 4842872, 4952312, 5005125, 5023656
Offset: 1
1296378 is a term because 1296378 = 3^3 + 75^3 + 94^3 = 8^3 + 32^3 + 107^3 = 20^3 + 76^3 + 93^3 = 30^3 + 58^3 + 101^3 = 32^3 + 80^3 + 89^3 = 59^3 + 74^3 + 86^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 6])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments