cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345119 Numbers that are the sum of three third powers in nine or more ways.

Original entry on oeis.org

14926248, 16819704, 20168784, 34012224, 44946000, 45580536, 54042624, 58995000, 59768064, 62099136, 66203136, 67956624, 69190848, 69393024, 71319312, 72505152, 78008832, 78716448, 79539832, 80621568, 80996544, 89354448, 90757584, 92853216, 94118760, 95331816
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Examples

			14926248 is a term because 14926248 = 2^3 + 33^3 + 245^3  = 11^3 + 185^3 + 203^3  = 14^3 + 32^3 + 245^3  = 50^3 + 113^3 + 236^3  = 71^3 + 89^3 + 239^3  = 74^3 + 189^3 + 196^3  = 89^3 + 185^3 + 197^3  = 98^3 + 148^3 + 219^3  = 105^3 + 149^3 + 217^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A345088 Numbers that are the sum of three third powers in exactly eight ways.

Original entry on oeis.org

2562624, 5618250, 6525000, 6755328, 7374375, 12742920, 13581352, 14027112, 14288373, 18443160, 20500992, 22783032, 23113728, 25305048, 26936064, 27131840, 29515968, 30205440, 32835375, 38269440, 39317832, 39339000, 40189248, 42144192, 42183504, 43077952
Offset: 1

Views

Author

David Consiglio, Jr., Jun 07 2021

Keywords

Comments

Differs from A345087 at term 10 because 14926248 = 2^3 + 33^3 + 245^3 = 11^3 + 185^3 + 203^3 = 14^3 + 32^3 + 245^3 = 50^3 + 113^3 + 236^3 = 71^3 + 89^3 + 239^3 = 74^3 + 189^3 + 196^3 = 89^3 + 185^3 + 197^3 = 98^3 + 148^3 + 219^3 = 105^3 + 149^3 + 217^3.

Examples

			2562624 is a term because 2562624 = 7^3 + 35^3 + 135^3  = 7^3 + 63^3 + 131^3  = 11^3 + 99^3 + 115^3  = 16^3 + 45^3 + 134^3  = 29^3 + 102^3 + 112^3  = 35^3 + 59^3 + 131^3  = 50^3 + 84^3 + 121^3  = 68^3 + 71^3 + 122^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345154 Numbers that are the sum of four third powers in exactly nine ways.

Original entry on oeis.org

42120, 46683, 50806, 50904, 51408, 51480, 51688, 52208, 53865, 54971, 56385, 57113, 60515, 60984, 62433, 65303, 66276, 66339, 66430, 67158, 69048, 69832, 69930, 71162, 72072, 72520, 72576, 72800, 73017, 77714, 77903, 79345, 79667, 79849, 80066, 80073, 81207
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345146 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A344751 Numbers that are the sum of three fourth powers in exactly nine ways.

Original entry on oeis.org

105760443698, 131801075042, 187758243218, 253590205778, 319889609522, 445600096578, 510334859762, 601395185762, 615665999858, 730871934338, 749472385298, 855952663202, 856722174098, 951843993282, 1157106866258, 1186209675378, 1290443616098, 1455023522498
Offset: 1

Views

Author

David Consiglio, Jr., May 28 2021

Keywords

Comments

Differs from A344750 at term 1 because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.

Examples

			105760443698 is a term because 105760443698 = 7^4 + 476^4 + 483^4  = 51^4 + 452^4 + 503^4  = 76^4 + 437^4 + 513^4  = 107^4 + 417^4 + 524^4  = 133^4 + 399^4 + 532^4  = 199^4 + 348^4 + 547^4  = 212^4 + 337^4 + 549^4  = 228^4 + 323^4 + 551^4  = 252^4 + 301^4 + 553^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345122 Numbers that are the sum of three third powers in exactly ten ways.

Original entry on oeis.org

34012224, 58995000, 71319312, 72505152, 92853216, 94118760, 95331816, 139755888, 147545280, 150506000, 157464000, 159874560, 161023680, 164186352, 171904032, 182393856, 184909824, 188224128, 189771336, 191260224, 199108125, 201342240, 202440384, 217054720
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Comments

Differs from A345121 at term 3 because 69190848 = 23^3 + 107^3 + 407^3 = 23^3 + 191^3 + 395^3 = 33^3 + 271^3 + 365^3 = 35^3 + 299^3 + 347^3 = 50^3 + 137^3 + 404^3 = 89^3 + 308^3 + 338^3 = 95^3 + 178^3 + 396^3 = 107^3 + 179^3 + 395^3 = 121^3 + 149^3 + 399^3 = 152^3 + 254^3 + 365^3 = 206^3 + 215^3 + 368^3.

Examples

			34012224 is a term because 34012224 = 35^3 + 215^3 + 287^3  = 38^3 + 152^3 + 311^3  = 40^3 + 113^3 + 318^3  = 44^3 + 245^3 + 266^3  = 71^3 + 113^3 + 317^3  = 99^3 + 191^3 + 295^3  = 101^3 + 226^3 + 276^3  = 117^3 + 185^3 + 295^3  = 161^3 + 215^3 + 269^3  = 172^3 + 213^3 + 266^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 08 2021
Showing 1-5 of 5 results.