cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345183 Numbers that are the sum of five third powers in eight or more ways.

Original entry on oeis.org

4392, 4915, 5139, 5256, 5321, 5624, 5643, 5678, 5741, 5769, 5797, 5832, 5860, 5914, 6075, 6112, 6138, 6202, 6462, 6497, 6499, 6560, 6588, 6616, 6642, 6651, 6677, 6833, 6859, 6884, 6947, 7001, 7008, 7038, 7057, 7064, 7099, 7111, 7128, 7155, 7190, 7218, 7316
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			4915 is a term because 4915 = 1^3 + 2^3 + 7^3 + 12^3 + 12^3  = 1^3 + 3^3 + 7^3 + 9^3 + 14^3  = 1^3 + 8^3 + 8^3 + 11^3 + 11^3  = 2^3 + 4^3 + 6^3 + 6^3 + 15^3  = 3^3 + 3^3 + 5^3 + 7^3 + 15^3  = 3^3 + 3^3 + 10^3 + 11^3 + 11^3  = 4^3 + 6^3 + 6^3 + 8^3 + 14^3  = 8^3 + 8^3 + 8^3 + 9^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 8])
    for x in range(len(rets)):
        print(rets[x])

A344945 Numbers that are the sum of five fourth powers in exactly eight ways.

Original entry on oeis.org

534130, 654754, 663155, 729219, 737459, 742770, 758354, 810034, 813459, 816579, 831250, 906034, 930499, 954930, 1009954, 1055619, 1083955, 1099459, 1101859, 1103554, 1106019, 1157634, 1167794, 1180003, 1215394, 1217539, 1246354, 1253074, 1255539, 1278690
Offset: 1

Views

Author

David Consiglio, Jr., Jun 03 2021

Keywords

Comments

Differs from A344944 at term 2 because 619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4 = 1^4 + 3^4 + 4^4 + 8^4 + 28^4 = 1^4 + 11^4 + 14^4 + 22^4 + 24^4 = 2^4 + 2^4 + 8^4 + 17^4 + 27^4 = 2^4 + 13^4 + 13^4 + 18^4 + 26^4 = 3^4 + 6^4 + 12^4 + 16^4 + 27^4 = 4^4 + 12^4 + 14^4 + 23^4 + 23^4 = 9^4 + 12^4 + 16^4 + 21^4 + 24^4 = 14^4 + 16^4 + 18^4 + 19^4 + 23^4.

Examples

			534130 is a term because 534130 = 1^4 + 3^4 + 16^4 + 22^4 + 22^4  = 2^4 + 2^4 + 4^4 + 7^4 + 27^4  = 2^4 + 3^4 + 6^4 + 6^4 + 27^4  = 2^4 + 6^4 + 9^4 + 21^4 + 24^4  = 4^4 + 16^4 + 17^4 + 18^4 + 23^4  = 6^4 + 8^4 + 11^4 + 22^4 + 23^4  = 7^4 + 8^4 + 16^4 + 19^4 + 24^4  = 13^4 + 14^4 + 14^4 + 21^4 + 22^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345153 Numbers that are the sum of four third powers in exactly eight ways.

Original entry on oeis.org

27720, 30429, 31339, 31402, 33579, 34624, 34776, 36162, 40105, 42695, 44037, 44163, 44226, 44947, 45162, 45675, 46277, 46900, 47600, 49042, 50112, 50689, 51058, 51597, 51805, 52227, 52264, 52507, 53144, 54271, 54873, 55692, 55790, 56240, 58032, 58221, 58312
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345152 at term 1 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			30429 is a term because 30429 = 1^3 + 4^3 + 7^3 + 30^3  = 1^3 + 16^3 + 17^3 + 26^3  = 2^3 + 12^3 + 21^3 + 25^3  = 3^3 + 3^3 + 14^3 + 29^3  = 4^3 + 17^3 + 21^3 + 23^3  = 5^3 + 11^3 + 15^3 + 28^3  = 6^3 + 6^3 + 22^3 + 25^3  = 7^3 + 14^3 + 18^3 + 26^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 8])
    for x in range(len(rets)):
        print(rets[x])

A345181 Numbers that are the sum of five third powers in exactly seven ways.

Original entry on oeis.org

4472, 4544, 4600, 4957, 5076, 5113, 5120, 5132, 5165, 5174, 5347, 5354, 5384, 5391, 5410, 5445, 5474, 5481, 5507, 5543, 5617, 5715, 5760, 5834, 5895, 5923, 5984, 5986, 6049, 6128, 6131, 6245, 6280, 6373, 6407, 6434, 6436, 6544, 6553, 6733, 6768, 6831, 6840
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345180 at term 1 because 4392 = 1^3 + 1^3 + 10^3 + 10^3 + 11^3 = 1^3 + 2^3 + 2^3 + 9^3 + 14^3 = 1^3 + 8^3 + 9^3 + 10^3 + 10^3 = 2^3 + 2^3 + 3^3 + 5^3 + 15^3 = 2^3 + 3^3 + 5^3 + 8^3 + 14^3 = 2^3 + 8^3 + 8^3 + 8^3 + 12^3 = 3^3 + 6^3 + 7^3 + 8^3 + 13^3 = 5^3 + 5^3 + 5^3 + 9^3 + 13^3.

Examples

			4472 is a term because 4472 = 1^3 + 4^3 + 4^3 + 4^3 + 15^3  = 2^3 + 2^3 + 9^3 + 11^3 + 11^3  = 2^3 + 3^3 + 4^3 + 5^3 + 15^3  = 2^3 + 3^3 + 7^3 + 11^3 + 12^3  = 3^3 + 3^3 + 6^3 + 10^3 + 13^3  = 3^3 + 4^3 + 5^3 + 8^3 + 14^3  = 5^3 + 5^3 + 7^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A345186 Numbers that are the sum of five third powers in exactly nine ways.

Original entry on oeis.org

6112, 6138, 6462, 6497, 7001, 7038, 7057, 7064, 7099, 7190, 7316, 7328, 7372, 7433, 7561, 7587, 7703, 7759, 7841, 7902, 8163, 8352, 8443, 8560, 8630, 8632, 8928, 8991, 9017, 9136, 9143, 9171, 9288, 9316, 9379, 9505, 9566, 9647, 9658, 9675, 9684, 9745, 9773
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Comments

Differs from A345185 at term 1 because 5860 = 1^3 + 1^3 + 5^3 + 8^3 + 16^3 = 1^3 + 2^3 + 3^3 + 11^3 + 15^3 = 1^3 + 3^3 + 8^3 + 11^3 + 14^3 = 1^3 + 5^3 + 5^3 + 10^3 + 15^3 = 1^3 + 9^3 + 10^3 + 10^3 + 12^3 = 2^3 + 3^3 + 8^3 + 9^3 + 15^3 = 2^3 + 3^3 + 5^3 + 12^3 + 14^3 = 2^3 + 8^3 + 8^3 + 12^3 + 12^3 = 3^3 + 8^3 + 8^3 + 9^3 + 14^3 = 3^3 + 6^3 + 7^3 + 12^3 + 13^3.

Examples

			6112 is a term because 6112 = 1^3 + 2^3 + 9^3 + 11^3 + 14^3  = 1^3 + 3^3 + 7^3 + 12^3 + 14^3  = 1^3 + 6^3 + 6^3 + 7^3 + 16^3  = 2^3 + 2^3 + 9^3 + 9^3 + 15^3  = 2^3 + 3^3 + 5^3 + 11^3 + 15^3  = 2^3 + 8^3 + 9^3 + 9^3 + 14^3  = 3^3 + 3^3 + 3^3 + 4^3 + 17^3  = 3^3 + 5^3 + 8^3 + 11^3 + 14^3  = 8^3 + 8^3 + 8^3 + 11^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 9])
    for x in range(len(rets)):
        print(rets[x])

A345770 Numbers that are the sum of six cubes in exactly eight ways.

Original entry on oeis.org

1981, 2105, 2168, 2277, 2368, 2376, 2431, 2466, 2538, 2557, 2583, 2646, 2665, 2672, 2746, 2753, 2763, 2765, 2880, 2881, 2916, 2961, 2970, 2977, 2979, 2987, 3007, 3040, 3042, 3049, 3068, 3088, 3141, 3159, 3169, 3185, 3248, 3278, 3311, 3312, 3367, 3384, 3393
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345517 at term 8 because 2438 = 1^3 + 2^3 + 2^3 + 2^3 + 6^3 + 13^3 = 1^3 + 2^3 + 4^3 + 5^3 + 8^3 + 12^3 = 1^3 + 5^3 + 5^3 + 9^3 + 9^3 + 9^3 = 2^3 + 2^3 + 2^3 + 7^3 + 7^3 + 12^3 = 2^3 + 2^3 + 3^3 + 4^3 + 10^3 + 11^3 = 2^3 + 3^3 + 6^3 + 9^3 + 9^3 + 9^3 = 2^3 + 4^3 + 5^3 + 8^3 + 9^3 + 10^3 = 4^3 + 4^3 + 5^3 + 5^3 + 9^3 + 11^3 = 6^3 + 7^3 + 7^3 + 8^3 + 8^3 + 8^3.

Examples

			2105 is a term because 2105 = 1^3 + 1^3 + 4^3 + 4^3 + 4^3 + 11^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 11^3 = 1^3 + 2^3 + 6^3 + 7^3 + 7^3 + 8^3 = 1^3 + 4^3 + 4^3 + 4^3 + 8^3 + 9^3 = 1^3 + 4^3 + 5^3 + 5^3 + 5^3 + 10^3 = 2^3 + 3^3 + 4^3 + 5^3 + 8^3 + 9^3 = 3^3 + 3^3 + 3^3 + 7^3 + 7^3 + 9^3 = 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 8^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 8])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.