A344926
Numbers that are the sum of four fourth powers in nine or more ways.
Original entry on oeis.org
328118259, 385202034, 395613234, 489597858, 592417938, 625839858, 641398338, 674511618, 677125218, 693239634, 699598578, 722302434, 779889314, 780278643, 780595299, 781388643, 782999714, 791204514, 792005379, 797405714, 797935698, 803898018, 805299699
Offset: 1
328118259 is a term because 328118259 = 2^4 + 77^4 + 109^4 + 111^4 = 8^4 + 79^4 + 93^4 + 121^4 = 18^4 + 79^4 + 97^4 + 119^4 = 21^4 + 77^4 + 98^4 + 119^4 = 27^4 + 77^4 + 94^4 + 121^4 = 34^4 + 77^4 + 89^4 + 123^4 = 46^4 + 57^4 + 103^4 + 119^4 = 49^4 + 77^4 + 77^4 + 126^4 = 61^4 + 66^4 + 77^4 + 127^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
A345155
Numbers that are the sum of four third powers in ten or more ways.
Original entry on oeis.org
21896, 36225, 46872, 48321, 48825, 51506, 52416, 53200, 55575, 58338, 58968, 59059, 60480, 62244, 66024, 67536, 67851, 70434, 70525, 71155, 72819, 73808, 76384, 76923, 77896, 78624, 78912, 81081, 81991, 85995, 87507, 88641, 90181, 90783, 91448, 91728, 92008
Offset: 1
21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A341897
Numbers that are the sum of five fourth powers in ten or more ways.
Original entry on oeis.org
954979, 1205539, 1574850, 1713859, 1801459, 1863859, 1877394, 1882579, 2071939, 2109730, 2138419, 2142594, 2157874, 2225859, 2288179, 2419954, 2492434, 2495939, 2605314, 2663539, 2711394, 2784499, 2835939, 2847394, 2849859, 2880994, 2919154, 2924674, 3007474
Offset: 1
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4
so 954979 is a term.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
A344929
Numbers that are the sum of four fourth powers in exactly ten ways.
Original entry on oeis.org
592417938, 806692194, 940415058, 980421939, 1269819378, 1355899923, 1488645939, 1599073938, 1635878754, 1657885698, 1666044963, 1758151458, 1797373314, 1813434483, 1991146899, 2064726483, 2198975058, 2246905683, 2266525314, 2302589298, 2302698258, 2502041283
Offset: 1
592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4 = 7^4 + 11^4 + 20^4 + 156^4 = 10^4 + 17^4 + 17^4 + 156^4 = 12^4 + 112^4 + 115^4 + 127^4 = 15^4 + 86^4 + 107^4 + 142^4 = 21^4 + 49^4 + 70^4 + 154^4 = 25^4 + 107^4 + 112^4 + 132^4 = 26^4 + 45^4 + 71^4 + 154^4 = 28^4 + 105^4 + 112^4 + 133^4 = 63^4 + 77^4 + 112^4 + 140^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
A344862
Numbers that are the sum of three fourth powers in ten or more ways.
Original entry on oeis.org
49511121842, 281539574498, 364765611938, 401069383442, 541692688082, 703409488418, 792177949472, 971024246738, 1067666696642, 1090123576178, 1315120863602, 1383280118402, 1442012945282, 1561211646722, 1828395925538, 1868287026242, 1872511131218, 2054230720178
Offset: 1
49511121842 is a term because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.
-
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
Showing 1-5 of 5 results.
Comments