cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345146 Numbers that are the sum of four third powers in nine or more ways.

Original entry on oeis.org

21896, 36225, 42120, 46683, 46872, 48321, 48825, 50806, 50904, 51408, 51480, 51506, 51688, 52208, 52416, 53200, 53865, 54971, 55575, 56385, 57113, 58338, 58968, 59059, 60480, 60515, 60984, 62244, 62433, 65303, 66024, 66276, 66339, 66430, 67158, 67536, 67851
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			42120 is a term because 42120 = 1^3 + 19^3 + 22^3 + 27^3  = 2^3 + 3^3 + 13^3 + 33^3  = 2^3 + 6^3 + 17^3 + 32^3  = 3^3 + 3^3 + 20^3 + 31^3  = 3^3 + 17^3 + 20^3 + 29^3  = 3^3 + 13^3 + 14^3 + 32^3  = 6^3 + 15^3 + 16^3 + 31^3  = 7^3 + 17^3 + 23^3 + 27^3  = 11^3 + 13^3 + 21^3 + 29^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 9])
    for x in range(len(rets)):
        print(rets[x])

A025375 Numbers that are the sum of 4 nonzero squares in 10 or more ways.

Original entry on oeis.org

198, 202, 210, 234, 246, 247, 250, 252, 255, 258, 262, 268, 270, 273, 274, 279, 282, 285, 290, 292, 294, 295, 297, 298, 300, 301, 303, 306, 307, 310, 313, 315, 318, 319, 322, 324, 325, 327, 330, 333, 335, 338, 339, 340, 342, 343, 345, 346, 348, 350, 351, 354, 355, 357
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 10}. - R. J. Mathar, Jun 15 2018

A345187 Numbers that are the sum of five third powers in ten or more ways.

Original entry on oeis.org

5860, 6588, 6651, 6859, 6947, 8056, 8289, 8371, 8506, 8569, 8758, 9045, 9080, 9099, 9108, 9227, 9414, 9612, 9801, 9829, 9864, 10009, 10018, 10044, 10277, 10466, 10485, 10522, 10529, 10800, 10963, 10970, 10979, 11008, 11017, 11061, 11089, 11152, 11241, 11385
Offset: 1

Views

Author

David Consiglio, Jr., Jun 10 2021

Keywords

Examples

			6588 is a term because 6588 = 1^3 + 3^3 + 5^3 + 7^3 + 17^3  = 1^3 + 4^3 + 6^3 + 13^3 + 14^3  = 1^3 + 5^3 + 8^3 + 8^3 + 16^3  = 1^3 + 10^3 + 10^3 + 11^3 + 12^3  = 2^3 + 2^3 + 9^3 + 12^3 + 14^3  = 2^3 + 3^3 + 8^3 + 11^3 + 15^3  = 3^3 + 8^3 + 8^3 + 11^3 + 14^3  = 3^3 + 3^3 + 5^3 + 10^3 + 16^3  = 5^3 + 5^3 + 8^3 + 10^3 + 15^3  = 8^3 + 9^3 + 10^3 + 10^3 + 12^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])

A344928 Numbers that are the sum of four fourth powers in ten or more ways.

Original entry on oeis.org

592417938, 677125218, 780595299, 781388643, 803898018, 806692194, 937239954, 940415058, 980421939, 1164012003, 1269819378, 1355899923, 1403089314, 1488645939, 1539221154, 1599073938, 1635878754, 1657885698, 1666044963, 1701067683, 1734489603, 1758151458
Offset: 1

Views

Author

David Consiglio, Jr., Jun 02 2021

Keywords

Examples

			592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4  = 7^4 + 11^4 + 20^4 + 156^4  = 10^4 + 17^4 + 17^4 + 156^4  = 12^4 + 112^4 + 115^4 + 127^4  = 15^4 + 86^4 + 107^4 + 142^4  = 21^4 + 49^4 + 70^4 + 154^4  = 25^4 + 107^4 + 112^4 + 132^4  = 26^4 + 45^4 + 71^4 + 154^4  = 28^4 + 105^4 + 112^4 + 133^4  = 63^4 + 77^4 + 112^4 + 140^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 03 2021

A345121 Numbers that are the sum of three third powers in ten or more ways.

Original entry on oeis.org

34012224, 58995000, 69190848, 71319312, 72505152, 92853216, 94118760, 95331816, 119095488, 119409984, 139755888, 147545280, 150506000, 150547032, 157464000, 159874560, 161023680, 161350272, 164186352, 171904032, 175986000, 176175000, 182393856, 184909824
Offset: 1

Views

Author

David Consiglio, Jr., Jun 08 2021

Keywords

Examples

			34012224 is a term because 34012224 = 35^3 + 215^3 + 287^3  = 38^3 + 152^3 + 311^3  = 40^3 + 113^3 + 318^3  = 44^3 + 245^3 + 266^3  = 71^3 + 113^3 + 317^3  = 99^3 + 191^3 + 295^3  = 101^3 + 226^3 + 276^3  = 117^3 + 185^3 + 295^3  = 161^3 + 215^3 + 269^3  = 172^3 + 213^3 + 266^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 10])
    for x in range(len(rets)):
        print(rets[x])

Extensions

More terms from Sean A. Irvine, Jun 08 2021

A345156 Numbers that are the sum of four third powers in exactly ten ways.

Original entry on oeis.org

21896, 36225, 48825, 51506, 52416, 53200, 58338, 58968, 60480, 66024, 67851, 70434, 70525, 71155, 72819, 76923, 78624, 78912, 85995, 87507, 88641, 90181, 90783, 91728, 93555, 97552, 98280, 98560, 99008, 99225, 99792, 100170, 103040, 104104, 104265, 104958
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345155 at term 3 because 46872 = 1^3 + 16^3 + 22^3 + 30^3 = 2^3 + 11^3 + 17^3 + 33^3 = 3^3 + 3^3 + 4^3 + 35^3 = 3^3 + 4^3 + 26^3 + 29^3 = 3^3 + 5^3 + 23^3 + 31^3 = 4^3 + 10^3 + 24^3 + 30^3 = 5^3 + 17^3 + 23^3 + 29^3 = 6^3 + 10^3 + 20^3 + 32^3 = 11^3 + 11^3 + 21^3 + 31^3 = 11^3 + 14^3 + 17^3 + 32^3 = 19^3 + 21^3 + 21^3 + 25^3.

Examples

			21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3  = 2^3 + 2^3 + 12^3 + 26^3  = 2^3 + 3^3 + 19^3 + 23^3  = 2^3 + 5^3 + 15^3 + 25^3  = 3^3 + 10^3 + 16^3 + 24^3  = 3^3 + 17^3 + 19^3 + 19^3  = 4^3 + 6^3 + 20^3 + 22^3  = 5^3 + 8^3 + 14^3 + 25^3  = 7^3 + 11^3 + 17^3 + 23^3  = 8^3 + 9^3 + 19^3 + 22^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 10])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.