cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A345832 Numbers that are the sum of seven fourth powers in exactly ten ways.

Original entry on oeis.org

31251, 44547, 45827, 45892, 47667, 47971, 49572, 51092, 53316, 53476, 54531, 54596, 54756, 57411, 58276, 58660, 59781, 59811, 59827, 59861, 59876, 59892, 61076, 64581, 65876, 65891, 66356, 66596, 66676, 67716, 67876, 68131, 68322, 68772, 69171, 69667, 70116
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345576 at term 5 because 45907 = 1^4 + 1^4 + 3^4 + 4^4 + 8^4 + 12^4 + 12^4 = 1^4 + 6^4 + 6^4 + 8^4 + 8^4 + 9^4 + 13^4 = 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 11^4 + 13^4 = 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 11^4 + 13^4 = 2^4 + 2^4 + 4^4 + 7^4 + 7^4 + 7^4 + 14^4 = 2^4 + 3^4 + 6^4 + 6^4 + 7^4 + 7^4 + 14^4 = 2^4 + 4^4 + 6^4 + 7^4 + 9^4 + 11^4 + 12^4 = 2^4 + 5^4 + 5^4 + 10^4 + 10^4 + 10^4 + 11^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 9^4 + 14^4 = 3^4 + 6^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 4^4 + 7^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4.

Examples

			44547 is a term because 44547 = 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 11^4 + 13^4 = 1^4 + 2^4 + 2^4 + 6^4 + 7^4 + 7^4 + 14^4 = 1^4 + 2^4 + 6^4 + 6^4 + 9^4 + 11^4 + 12^4 = 1^4 + 6^4 + 7^4 + 8^4 + 8^4 + 8^4 + 13^4 = 2^4 + 2^4 + 8^4 + 9^4 + 9^4 + 9^4 + 12^4 = 2^4 + 4^4 + 6^4 + 6^4 + 9^4 + 9^4 + 13^4 = 2^4 + 4^4 + 7^4 + 7^4 + 8^4 + 11^4 + 12^4 = 3^4 + 3^4 + 4^4 + 4^4 + 7^4 + 12^4 + 12^4 = 3^4 + 6^4 + 6^4 + 7^4 + 8^4 + 11^4 + 12^4 = 4^4 + 4^4 + 8^4 + 8^4 + 9^4 + 11^4 + 11^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A346286 Numbers that are the sum of seven fifth powers in exactly nine ways.

Original entry on oeis.org

110276376, 124732805, 127808693, 130298618, 188116743, 202274051, 202686274, 203343582, 230909843, 233137574, 233549568, 234250752, 244250335, 251138524, 253480833, 254017026, 254380543, 265006057, 265072501, 273628068, 279536432, 279770326, 280361082
Offset: 1

Views

Author

David Consiglio, Jr., Jul 12 2021

Keywords

Comments

Differs from A345631 at term 5 because 134581976 = 1^5 + 14^5 + 17^5 + 18^5 + 26^5 + 31^5 + 39^5 = 1^5 + 1^5 + 10^5 + 12^5 + 19^5 + 35^5 + 38^5 = 8^5 + 11^5 + 12^5 + 17^5 + 27^5 + 33^5 + 38^5 = 3^5 + 12^5 + 12^5 + 21^5 + 28^5 + 32^5 + 38^5 = 4^5 + 11^5 + 13^5 + 22^5 + 24^5 + 36^5 + 36^5 = 5^5 + 6^5 + 19^5 + 20^5 + 24^5 + 36^5 + 36^5 = 1^5 + 4^5 + 21^5 + 21^5 + 29^5 + 34^5 + 36^5 = 1^5 + 8^5 + 14^5 + 23^5 + 32^5 + 32^5 + 36^5 = 6^5 + 25^5 + 25^5 + 25^5 + 29^5 + 30^5 + 36^5 = 12^5 + 20^5 + 21^5 + 26^5 + 28^5 + 34^5 + 35^5.

Examples

			110276376 is a term because 110276376 = 1^5 + 3^5 + 5^5 + 7^5 + 17^5 + 23^5 + 40^5 = 5^5 + 10^5 + 16^5 + 16^5 + 19^5 + 20^5 + 40^5 = 1^5 + 8^5 + 14^5 + 16^5 + 21^5 + 27^5 + 39^5 = 7^5 + 8^5 + 11^5 + 14^5 + 16^5 + 33^5 + 37^5 = 4^5 + 7^5 + 8^5 + 13^5 + 26^5 + 31^5 + 37^5 = 1^5 + 5^5 + 6^5 + 20^5 + 28^5 + 29^5 + 37^5 = 3^5 + 3^5 + 7^5 + 18^5 + 27^5 + 32^5 + 36^5 = 6^5 + 12^5 + 18^5 + 25^5 + 30^5 + 31^5 + 34^5 = 6^5 + 10^5 + 20^5 + 27^5 + 27^5 + 33^5 + 33^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 9])
        for x in range(len(rets)):
            print(rets[x])

A345643 Numbers that are the sum of seven fifth powers in ten or more ways.

Original entry on oeis.org

134581976, 189642309, 219063107, 235438301, 252277376, 275782407, 281935070, 290928076, 300919884, 308188849, 309631268, 315635200, 322947868, 327287951, 335530174, 342030094, 358852218, 361946949, 379913293, 384699424, 387538625, 391133568
Offset: 1

Views

Author

David Consiglio, Jr., Jun 22 2021

Keywords

Examples

			189642309 is a term because 189642309 = 1^5 + 1^5 + 2^5 + 19^5 + 30^5 + 36^5 + 40^5 = 1^5 + 2^5 + 6^5 + 7^5 + 18^5 + 20^5 + 45^5 = 1^5 + 6^5 + 21^5 + 27^5 + 29^5 + 36^5 + 39^5 = 2^5 + 9^5 + 19^5 + 23^5 + 33^5 + 33^5 + 40^5 = 3^5 + 4^5 + 21^5 + 28^5 + 29^5 + 34^5 + 40^5 = 6^5 + 7^5 + 11^5 + 29^5 + 33^5 + 36^5 + 37^5 = 7^5 + 12^5 + 17^5 + 20^5 + 29^5 + 32^5 + 42^5 = 8^5 + 11^5 + 21^5 + 21^5 + 22^5 + 34^5 + 42^5 = 13^5 + 14^5 + 14^5 + 19^5 + 21^5 + 38^5 + 40^5 = 20^5 + 21^5 + 24^5 + 24^5 + 24^5 + 38^5 + 38^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])

A346335 Numbers that are the sum of eight fifth powers in exactly ten ways.

Original entry on oeis.org

15539667, 22932525, 24393600, 24650406, 24952961, 24953742, 25142513, 26001294, 27988486, 28609075, 29309819, 31794336, 32223105, 32527286, 32610600, 32807777, 32890541, 32998317, 33015125, 33187858, 33361339, 33550572, 33659175, 33782597, 34029369, 34073650
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345618 at term 7 because 25054306 = 1^5 + 1^5 + 2^5 + 6^5 + 12^5 + 12^5 + 12^5 + 30^5 = 5^5 + 6^5 + 6^5 + 12^5 + 14^5 + 14^5 + 20^5 + 29^5 = 4^5 + 5^5 + 8^5 + 11^5 + 11^5 + 16^5 + 23^5 + 28^5 = 4^5 + 5^5 + 5^5 + 7^5 + 17^5 + 20^5 + 20^5 + 28^5 = 2^5 + 6^5 + 9^5 + 9^5 + 9^5 + 21^5 + 23^5 + 27^5 = 1^5 + 4^5 + 4^5 + 9^5 + 19^5 + 21^5 + 21^5 + 27^5 = 3^5 + 5^5 + 6^5 + 13^5 + 13^5 + 14^5 + 26^5 + 26^5 = 1^5 + 3^5 + 10^5 + 10^5 + 10^5 + 23^5 + 23^5 + 26^5 = 9^5 + 10^5 + 14^5 + 17^5 + 17^5 + 20^5 + 23^5 + 26^5 = 7^5 + 12^5 + 15^5 + 15^5 + 19^5 + 19^5 + 23^5 + 26^5 = 3^5 + 4^5 + 4^5 + 7^5 + 17^5 + 21^5 + 25^5 + 25^5.

Examples

			15539667 is a term because 15539667 = 1^5 + 7^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 27^5 = 1^5 + 4^5 + 7^5 + 9^5 + 13^5 + 13^5 + 13^5 + 27^5 = 1^5 + 1^5 + 7^5 + 7^5 + 10^5 + 16^5 + 19^5 + 26^5 = 1^5 + 1^5 + 2^5 + 10^5 + 12^5 + 17^5 + 18^5 + 26^5 = 2^5 + 2^5 + 3^5 + 8^5 + 9^5 + 16^5 + 23^5 + 24^5 = 4^5 + 11^5 + 13^5 + 13^5 + 15^5 + 15^5 + 22^5 + 24^5 = 5^5 + 6^5 + 13^5 + 15^5 + 15^5 + 19^5 + 20^5 + 24^5 = 3^5 + 10^5 + 12^5 + 12^5 + 18^5 + 18^5 + 20^5 + 24^5 = 6^5 + 9^5 + 11^5 + 11^5 + 15^5 + 21^5 + 22^5 + 22^5 = 3^5 + 5^5 + 10^5 + 19^5 + 19^5 + 20^5 + 20^5 + 21^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])

A346365 Numbers that are the sum of six fifth powers in exactly ten ways.

Original entry on oeis.org

55302546200, 89999127392, 96110537743, 104484239200, 120492759200, 121258798144, 127794946400, 133364991375, 135030535200, 136156575744, 151305014432, 155434423925, 174388570400, 177099008000, 179272687000, 182844944832, 184948721056, 187873845500
Offset: 1

Views

Author

David Consiglio, Jr., Jul 18 2021

Keywords

Comments

This sequence differs from A344196:
180336745600 = 48^5 + 54^5 + 66^5 + 66^5 + 112^5 + 174^5
= 9^5 + 21^5 + 93^5 + 112^5 + 117^5 + 168^5
= 11^5 + 44^5 + 73^5 + 92^5 + 133^5 + 167^5
= 15^5 + 81^5 + 94^5 + 95^5 + 129^5 + 166^5
= 1^5 + 49^5 + 62^5 + 107^5 + 138^5 + 163^5
= 35^5 + 69^5 + 75^5 + 98^5 + 141^5 + 162^5
= 18^5 + 81^5 + 105^5 + 112^5 + 135^5 + 159^5
= 14^5 + 50^5 + 62^5 + 86^5 + 150^5 + 158^5
= 2^5 + 52^5 + 54^5 + 108^5 + 146^5 + 158^5
= 14^5 + 22^5 + 66^5 + 118^5 + 142^5 + 158^5
= 4^5 + 50^5 + 58^5 + 102^5 + 150^5 + 156^5,
so 180336745600 is in A344196, but is not in this sequence.

Examples

			55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5
            = 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5
            = 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5
            = 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5
            = 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5
            = 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5
            = 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5
            = 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5
            = 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5
            = 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5
so 55302546200 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.