cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A345556 Numbers that are the sum of ten cubes in eight or more ways.

Original entry on oeis.org

623, 625, 630, 632, 644, 651, 658, 662, 665, 677, 684, 688, 695, 697, 699, 708, 714, 715, 721, 723, 725, 728, 730, 733, 734, 736, 740, 745, 747, 749, 751, 752, 754, 756, 757, 758, 759, 760, 764, 766, 769, 771, 773, 775, 776, 777, 778, 780, 782, 785, 786, 787
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			625 is a term because 625 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 7^3 = 1^3 + 1^3 + 1^3 + 1^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 4^3 + 4^3 + 5^3 = 1^3 + 1^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 6^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3 + 5^3 + 5^3 = 1^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 4^3 + 4^3 = 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 + 5^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A345505 Numbers that are the sum of nine squares in eight or more ways.

Original entry on oeis.org

57, 60, 63, 65, 66, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			60 is a term because 60 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 8])
        for x in range(len(rets)):
            print(rets[x])

A346806 Numbers that are the sum of ten squares in seven or more ways.

Original entry on oeis.org

57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120
Offset: 1

Views

Author

David Consiglio, Jr., Aug 04 2021

Keywords

Examples

			58 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 7^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 5^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 5^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2
   = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2
so 58 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 7])
        for x in range(len(rets)):
            print(rets[x])

A346808 Numbers that are the sum of ten squares in ten or more ways.

Original entry on oeis.org

61, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
Offset: 1

Views

Author

David Consiglio, Jr., Aug 04 2021

Keywords

Examples

			64 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 7^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 6^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 5^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 4^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2
   = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
   = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2
   = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2
   = 1^2 + 1^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2
so 64 is a term.
		

Crossrefs

Cf. A345558, A346803. Subsequence of A346807.

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**2 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 10])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-4 of 4 results.