cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A213999 Denominators of the triangle of fractions read by rows: pf(n,0) = 1, pf(n,n) = 1/(n+1) and pf(n+1,k) = pf(n,k) + pf(n,k-1) with 0 < k < n; denominators: A213998.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 3, 12, 5, 1, 2, 6, 12, 60, 6, 1, 2, 3, 4, 10, 20, 7, 1, 2, 6, 12, 20, 20, 140, 8, 1, 2, 3, 12, 15, 10, 35, 280, 9, 1, 2, 6, 4, 20, 30, 70, 280, 2520, 10, 1, 2, 3, 12, 10, 12, 21, 56, 252, 2520, 11, 1, 2, 6, 12, 60, 60, 84, 168, 504, 2520, 27720, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = A007395(n) for n > 0;
T(n,2) = A010704(n) for n > 1;
T(n,n-3) = A124838(n-2) for n > 2;
T(n,n-2) = A027611(n-1) for n > 1;
T(n,n-1) = A002805(n) for n > 0;
T(n,n) = n + 1;
A003418(n+1) = least common multiple of n-th row;
A214075(n,k) = floor(A213998(n,k) / T(n,k)).

Examples

			See A213998.
		

Programs

  • Haskell
    import Data.Ratio ((%), denominator, Ratio)
    a213999 n k = a213999_tabl !! n !! k
    a213999_row n = a213999_tabl !! n
    a213999_tabl = map (map denominator) $ iterate pf [1] where
       pf row = zipWith (+) ([0] ++ row) (row ++ [-1 % (x * (x + 1))])
                where x = denominator $ last row
  • Mathematica
    T[, 0] = 1; T[n, n_] := 1/(n + 1);
    T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 1, k - 1];
    Table[T[n, k] // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 10 2021 *)

A214075 Triangle read by rows: T(n,k) = floor(A213998(n,k) / A213999(n,k)), 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 7, 6, 2, 0, 1, 5, 12, 14, 8, 2, 0, 1, 6, 17, 26, 22, 11, 2, 0, 1, 7, 24, 44, 49, 34, 13, 2, 0, 1, 8, 31, 68, 93, 83, 47, 16, 2, 0, 1, 9, 40, 100, 162, 177, 131, 64, 19, 2, 0, 1, 10, 49, 140, 263, 340, 309
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = n - 1 for n > 0, cf. A001477;
T(n,2) = A074148(n-2) for n > 2;
T(n,n-2) = A022819(n) for n > 1;
T(n,n-1) = A055980(n) for n > 0;
T(n,n) = A000007(n).

Examples

			Start of triangle preceded by triangle "A213998/A213999":
. 0:                      1                                 1
. 1:                   1   1/2                             1  0
. 2:               1    3/2   1/3                         1  1  0
. 3:            1   5/2    11/6   1/4                    1 2  1  0
. 4:        1   7/2   13/3    25/12   1/5               1 3  4  2 0
. 5:     1   9/2   47/6   77/12   137/60   1/6         1 4  7  6 2 0
. 6:  1  11/2   37/3   57/4   87/10   49/20   1/7,    1 5 12 14 8 2 0.
		

Programs

  • Haskell
    a214075 n k = a214075_tabl !! n !! k
    a214075_row n = a214075_tabl !! n
    a214075_tabl = zipWith (zipWith div) a213998_tabl a213999_tabl

A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.

Original entry on oeis.org

1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 197698279, 201578155, 41054655, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

Numerator of a second-order harmonic number H(n, (2)) = Sum_{k=1..n} HarmonicNumber(k). - Alexander Adamchuk, Apr 12 2006
p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 06 2006
Denominator is A027611(n+1). p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 26 2006
a(n) = A213998(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
    
  • Maple
    a := n -> numer(add((n+1-j)/j, j=1..n));
    seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
  • Mathematica
    Numerator[Table[Sum[Sum[1/i,{i,1,k}],{k,1,n}],{n,1,30}]] (* Alexander Adamchuk, Apr 12 2006 *)
    Numerator[Table[Sum[k/(n-k+1),{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 26 2006 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
    
  • SageMath
    [numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022

Formula

From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = numerators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = numerators of (n+1)*(harmonic(n+1) - 1).
a(n) = numerators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator( Sum_{k=1..n} Sum_{i=1..k} 1/i ). - Alexander Adamchuk, Apr 12 2006
a(n) = numerator( Sum_{k=1..n} k/(n-k+1) ). - Alexander Adamchuk, Jul 26 2006
a(n) = numerator of integral_{x=1..n+1} floor((n+1)/x). - Jean-François Alcover, Jun 18 2013

A124837 Numerators of third-order harmonic numbers (defined by Conway and Guy, 1996).

Original entry on oeis.org

1, 7, 47, 57, 459, 341, 3349, 3601, 42131, 44441, 605453, 631193, 655217, 1355479, 23763863, 24444543, 476698557, 162779395, 166474515, 34000335, 265842403, 812400067, 20666950267, 21010170067, 192066102203, 194934439103
Offset: 1

Views

Author

Jonathan Vos Post, Nov 10 2006

Keywords

Comments

Denominators are A124838. All fractions reduced. Thanks to Jonathan Sondow for verifying these calculations. He suggests that the equivalent definition in terms of first order harmonic numbers may be computationally simpler. We are happy with the description of A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n, but baffled by the description of A027611.
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) is the numerator of H(n, (3)) = Sum_{m=1..n} Sum_{k=1..m} HarmonicNumber(k).
Denominators are listed in A124838.
p divides a(p-5) for prime p > 5.
Primes are listed in A129880.
Numbers k such that a(k) is prime are listed in A129881. (End)

Examples

			a(1) = 1 = numerator of 1/1.
a(2) = 7 = numerator of 1/1 + 5/2 = 7/2.
a(3) = 47 = numerator of 7/2 + 13/3 = 47/6.
a(4) = 57 = numerator of 47/6 + 77/12 = 57/4.
a(5) = 549 = numerator of 57/4 + 87/10 = 549/20.
a(6) = 341 = numerator of 549/20 + 223/20 = 341/10
a(7) = 3349 = numerator of 341/10 + 481/35 = 3349/70.
a(8) = 88327 = numerator of 3349/70 + 4609/280 = 88327/1260.
a(9) = 3844 = numerator of 88327/1260 + 4861/252 = 3844/45.
a(10) = 54251 = numerator of 3844/45 + 55991/2520 = 54251/504, or, untelescoping:
a(10) = 54251 = numerator of 1/1 + 5/2 + 13/3 + 77/12 + 87/10 + 223/20 + 481/35 + 4609/252 + 4861/252 + 55991/2520 = 54251/504.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, pp. 143 and 258-259, 1996.

Crossrefs

Programs

  • Haskell
    a124837 n = a213998 (n + 2) (n - 1) -- Reinhard Zumkeller, Jul 03 2012
  • Mathematica
    Table[Numerator[(n+2)!/2!/n!*Sum[1/k,{k,3,n+2}]],{n,1,30}] (* Alexander Adamchuk, Nov 11 2006 *)

Formula

A124837(n)/A124838(n) = Sum{i=1..n} A027612(n)/A027611(n+1).
From Alexander Adamchuk, Nov 11 2006: (Start)
a(n) = numerator(Sum_{m=1..n} Sum_{l=1..m} Sum_{k=1..l} 1/k).
a(n) = numerator(((n+2)!/(2!*n!)) * Sum_{k=3..n+2} 1/k).
a(n) = numerator(((n+2)*(n+1)/2) * Sum_{k=3..n+2} 1/k). (End)
a(n) = numerator(Sum_{k=0..n-1} (-1)^k*binomial(-3,k)/(n-k)). - Gary Detlefs, Jul 18 2011
a(n) = A213998(n+2,n-1). - Reinhard Zumkeller, Jul 03 2012

Extensions

Corrected and extended by Alexander Adamchuk, Nov 11 2006

A188386 a(n) = numerator(H(n+2)-H(n-1)), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

Original entry on oeis.org

11, 13, 47, 37, 107, 73, 191, 121, 299, 181, 431, 253, 587, 337, 767, 433, 971, 541, 1199, 661, 1451, 793, 1727, 937, 2027, 1093, 2351, 1261, 2699, 1441, 3071, 1633, 3467, 1837, 3887, 2053, 4331, 2281, 4799, 2521, 5291, 2773, 5807, 3037, 6347, 3313, 6911, 3601
Offset: 1

Views

Author

Gary Detlefs, Mar 29 2011

Keywords

Comments

Denominators are listed in A033931.
A027446 appears to be divisible by a(n).
The sequence lists also the largest odd divisors of 3*m^2-1 (A080663) for m>1. In fact, for m even, the largest odd divisor is 3*m^2-1 itself; for m odd, the largest odd divisor is (3*m^2-1)/2. From this follows the second formula given in Formula field. - Bruno Berselli, Aug 27 2013

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a188386 n = a188386_list !! (n-1)
    a188386_list = map numerator $ zipWith (-) (drop 3 hs) hs
       where hs = 0 : scanl1 (+) (map (1 %) [1..])
    -- Reinhard Zumkeller, Jul 03 2012
  • Magma
    [Numerator((3*n^2+6*n+2)/((n*(n+1)*(n+2)))): n in [1..50]]; // Vincenzo Librandi, Mar 30 2011
    
  • Maple
    seq((3-(-1)^n)*(3*n^2+6*n+2)/4, n=1..100);
  • Mathematica
    Table[(3 - (-1)^n)*(3*n^2 + 6*n + 2)/4, {n, 40}] (* Wesley Ivan Hurt, Jan 29 2017 *)
    Numerator[#[[4]]-#[[1]]]&/@Partition[HarmonicNumber[Range[0,50]],4,1] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{11,13,47,37,107,73},50] (* Harvey P. Dale, Dec 31 2017 *)

Formula

a(n) = numerator((3*n^2+6*n+2)/(n*(n+1)*(n+2))).
a(n) = (3-(-1)^n)*(3*n^2+6*n+2)/4.
a(2n+1) = A158463(n+1), a(2n) = A003154(n+1).
G.f.: -x*(11+13*x+14*x^2-2*x^3-x^4+x^5) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Apr 09 2011
a(n) = numerator of coefficient of x^3 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - Francesco Daddi, Aug 04 2011
H(n+3) = 3/2 + 2*f(n)/((n+2)*(n+3)), where f(n) = Sum_{k=0..n}((-1)^k*binomial(-3,k)/(n+1-k)). - Gary Detlefs, Jul 17 2011
a(n) = A213998(n+2,2). - Reinhard Zumkeller, Jul 03 2012
Sum_{n>=1} 1/a(n) = c*(tan(c) - cot(c)/2) - 1/2, where c = Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022
Showing 1-5 of 5 results.