A074148 a(n) = n + floor(n^2/2).
1, 4, 7, 12, 17, 24, 31, 40, 49, 60, 71, 84, 97, 112, 127, 144, 161, 180, 199, 220, 241, 264, 287, 312, 337, 364, 391, 420, 449, 480, 511, 544, 577, 612, 647, 684, 721, 760, 799, 840, 881, 924, 967, 1012, 1057, 1104, 1151, 1200, 1249, 1300, 1351, 1404, 1457
Offset: 1
Examples
Equals row sums of the generating triangle: 1; 3, 1; 5, 1, 1; 7, 1, 3, 1; 9, 1, 5, 1, 1; 11, 1, 7, 1, 3, 1; 13, 1, 9, 1, 5, 1, 1; 15, 1, 11, 1, 7, 1, 3, 1; ... Example: a(5) = 17 = (9 + 1 + 5 + 1 + 1). - _Gary W. Adamson_, May 16 2010 The smallest 1-prolific permutations are 3142 and its symmetries; a(2) = 4. The smallest 2-prolific permutations are 3614725 and its symmetries; a(3) = 7. - _David Bevan_, Nov 30 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..2000
- D. Bevan, C. Homberger, and B. E. Tenner, Prolific permutations and permuted packings: downsets containing many large patterns, arXiv preprint arXiv:1608.06931 [math.CO], 2016.
- Peter M. Chema, Illustration of initial terms, n > 1.
- A. Edelman and M. La Croix, The Singular Values of the GUE (Less is More), arXiv preprint arXiv:1410.7065 [math.PR], 2014-2015. See Section 7.
- Kival Ngaokrajang, Illustration of initial terms.
- Eric Weisstein's World of Mathematics, Bishop Graph.
- Eric Weisstein's World of Mathematics, Black Bishop Graph.
- Eric Weisstein's World of Mathematics, Longest Path Problem.
- Wikipedia, Cartan decomposition.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
GAP
List([1..60],n->n+Int(n^2/2)); # Muniru A Asiru, Jan 04 2019
-
Magma
[(2*n^2+4*n+(-1)^n-1)/4: n in [1..60]]; // Vincenzo Librandi, Jun 16 2011
-
Maple
seq(floor(n^4/(2*n^2+1)),n=2..25); # Gary Detlefs, Feb 11 2010
-
Mathematica
f[x_, y_] := Floor[Abs[y/x - x/y]]; Table[Floor[f[1, n^2 + 2 n + 1]/2], {n, 60}] (* Robert G. Wilson v, Aug 11 2010 *) Table[n + Floor[n^2/2], {n, 20}] (* Eric W. Weisstein, Mar 27 2018 *) Table[((-1)^n + 2 n (n + 2) - 1)/4, {n, 10}] (* Eric W. Weisstein, Mar 27 2018 *) LinearRecurrence[{2, 0, -2, 1}, {1, 4, 7, 12}, 20] (* Eric W. Weisstein, Mar 27 2018 *) CoefficientList[Series[(-1 - 2 x + x^2)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
-
PARI
a(n)=(2*n^2+4*n-1)\/4 \\ Charles R Greathouse IV, Apr 17 2012
-
Python
def A074148(n): return n + n**2//2 # Chai Wah Wu, Jun 07 2022
Formula
a(n) = (2*n^2 + 4*n + (-1)^n - 1)/4. - Vladeta Jovovic, Apr 06 2003
a(n) = A109225(n,2) for n > 1. - Reinhard Zumkeller, Jun 23 2005
a(n) = +2*a(n-1) - 2*a(n-3) + 1*a(n-4). - Joerg Arndt, Apr 02 2011
a(n) = a(n-2) + 2*n, a(0) = 0, a(1) = 1. - Paul Barry, Jul 17 2004
From R. J. Mathar, Aug 30 2008: (Start)
G.f.: x*(1 + 2*x - x^2)/((1 - x)^3*(1 + x)).
a(n) + a(n+1) = A028387(n).
a(n+1) - a(n) = A109613(n+1). (End)
a(n) = floor(n^4/(2n^2 + 1)) with offset 2..a(2) = 1. - Gary Detlefs, Feb 11 2010
a(n) = n + floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Franck Maminirina Ramaharo, Jan 04 2019: (Start)
E.g.f.: (exp(-x) - (1 - 6*x - 2*x^2)*exp(x))/4. (End)
Sum_{n>=1} 1/a(n) = 1 - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Sep 16 2022
Extensions
More terms from Vladeta Jovovic, Apr 06 2003
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 31 2007
Further edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Description simplified by Eric W. Weisstein, Mar 27 2018
Comments