cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A081527 Erroneous version of A022819.

Original entry on oeis.org

1, 2, 4, 6, 8, 11, 13, 16, 19, 22, 25, 28, 31, 34, 38, 41, 44, 48, 51, 55, 59, 62, 66, 70, 74, 78, 81, 85, 89, 93, 97, 101, 106, 110, 114, 118, 122, 126, 131, 135, 139, 144, 148, 152, 157, 161, 166, 170, 174, 179, 183, 188, 193, 197, 202, 206, 211, 216
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by Martin Fuller, Jan 03 2006

A027612 Numerator of 1/n + 2/(n-1) + 3/(n-2) + ... + (n-1)/2 + n.

Original entry on oeis.org

1, 5, 13, 77, 87, 223, 481, 4609, 4861, 55991, 58301, 785633, 811373, 835397, 1715839, 29889983, 30570663, 197698279, 201578155, 41054655, 13920029, 325333835, 990874363, 25128807667, 25472027467, 232222818803, 235091155703, 6897956948587, 6975593267347
Offset: 1

Views

Author

Glen Burch (gburch(AT)erols.com)

Keywords

Comments

Numerator of a second-order harmonic number H(n, (2)) = Sum_{k=1..n} HarmonicNumber(k). - Alexander Adamchuk, Apr 12 2006
p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 06 2006
Denominator is A027611(n+1). p divides a(p-3) for prime p > 3. - Alexander Adamchuk, Jul 26 2006
a(n) = A213998(n,n-2) for n > 1. - Reinhard Zumkeller, Jul 03 2012

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), numerator)
    a027612 n = numerator $ sum $ zipWith (%) [1 .. n] [n, n-1 .. 1]
    -- Reinhard Zumkeller, Jul 03 2012
    
  • Magma
    [Numerator((&+[j/(n-j+1): j in [1..n]])): n in [1..30]]; // G. C. Greubel, Aug 23 2022
    
  • Maple
    a := n -> numer(add((n+1-j)/j, j=1..n));
    seq(a(n), n = 1..29); # Peter Luschny, May 12 2023
  • Mathematica
    Numerator[Table[Sum[Sum[1/i,{i,1,k}],{k,1,n}],{n,1,30}]] (* Alexander Adamchuk, Apr 12 2006 *)
    Numerator[Table[Sum[k/(n-k+1),{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 26 2006 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k/(n-k+1))); \\ Michel Marcus, Jul 14 2018
    
  • SageMath
    [numerator(n*(harmonic_number(n+1) - 1)) for n in (1..30)] # G. C. Greubel, Aug 23 2022

Formula

From Vladeta Jovovic, Sep 02 2002: (Start)
a(n) = numerators of coefficients in expansion of -log(1-x)/(1-x)^2.
a(n) = numerators of (n+1)*(harmonic(n+1) - 1).
a(n) = numerators of (n+1)*(Psi(n+2) + Euler-gamma - 1). (End)
a(n) = numerator( Sum_{k=1..n} Sum_{i=1..k} 1/i ). - Alexander Adamchuk, Apr 12 2006
a(n) = numerator( Sum_{k=1..n} k/(n-k+1) ). - Alexander Adamchuk, Jul 26 2006
a(n) = numerator of integral_{x=1..n+1} floor((n+1)/x). - Jean-François Alcover, Jun 18 2013

A214075 Triangle read by rows: T(n,k) = floor(A213998(n,k) / A213999(n,k)), 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 7, 6, 2, 0, 1, 5, 12, 14, 8, 2, 0, 1, 6, 17, 26, 22, 11, 2, 0, 1, 7, 24, 44, 49, 34, 13, 2, 0, 1, 8, 31, 68, 93, 83, 47, 16, 2, 0, 1, 9, 40, 100, 162, 177, 131, 64, 19, 2, 0, 1, 10, 49, 140, 263, 340, 309
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 03 2012

Keywords

Comments

T(n,0) = 1;
T(n,1) = n - 1 for n > 0, cf. A001477;
T(n,2) = A074148(n-2) for n > 2;
T(n,n-2) = A022819(n) for n > 1;
T(n,n-1) = A055980(n) for n > 0;
T(n,n) = A000007(n).

Examples

			Start of triangle preceded by triangle "A213998/A213999":
. 0:                      1                                 1
. 1:                   1   1/2                             1  0
. 2:               1    3/2   1/3                         1  1  0
. 3:            1   5/2    11/6   1/4                    1 2  1  0
. 4:        1   7/2   13/3    25/12   1/5               1 3  4  2 0
. 5:     1   9/2   47/6   77/12   137/60   1/6         1 4  7  6 2 0
. 6:  1  11/2   37/3   57/4   87/10   49/20   1/7,    1 5 12 14 8 2 0.
		

Programs

  • Haskell
    a214075 n k = a214075_tabl !! n !! k
    a214075_row n = a214075_tabl !! n
    a214075_tabl = zipWith (zipWith div) a213998_tabl a213999_tabl

A081528 a(n) = n*lcm{1,2,...,n}.

Original entry on oeis.org

1, 4, 18, 48, 300, 360, 2940, 6720, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 220540320, 4423058640, 4655851200, 4888643760, 5121436320, 123147264240, 128501493120, 669278610000, 696049754400
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2003

Keywords

Comments

Denominators in binomial transform of 1/(n + 1)^2. - Paul Barry, Aug 06 2004
Construct a sequence S_n from n sequences b_1, b_2, ..., b_n of periods 1, 2, ..., n, respectively, say, b_1 = [1, 1, ...], b_2 = [1, 2, 1, 2, ...], ..., b_n = [1, 2, 3, ..., n, 1, 2, 3, ..., n, ...], by taking S_n = [b_1(1), b_2(1), ..., b_n(1), b_1(2), b_2(2), ..., b_n(2), ..., b_1(n), b_2(n), ..., b_n(n), ...] (by listing the b_i sequences in rows and taking each column in turn as the next n terms of S_n). Then a(n) is the period of sequence S_n. - Rick L. Shepherd, Aug 21 2006
This is a sequence that goes in strictly ascending order. The related sequence A003418 also goes in ascending order but has consecutive repeated terms. Since n increases, then so too does a(n) even when A003418(n) doesn't. - Alonso del Arte, Nov 25 2012

Examples

			a(2) = 4 because the least common multiple of 1 and 2 is 2, and 2 * 2 = 4.
a(3) = 18 because lcm(1,2,3) = 6, and 3 * 6 = 18.
a(4) = 48 because lcm(1, 2, 3, 4) = 12, and 4 * 12 = 48.
		

Crossrefs

Programs

  • Derive
    a(n) := (n + 1)*LCM(VECTOR(k + 1, k, 0, n)) " Paul Barry, Aug 06 2004 "
    
  • Mathematica
    Table[n*LCM@@Range[n], {n, 30}] (* Harvey P. Dale, Oct 09 2012 *)
  • PARI
    l=vector(35); l[1]=1; print1("1, "); for(n=2,35, l[n]=lcm(l[n-1],n); print1(n*l[n],", ")) \\ Rick L. Shepherd, Aug 21 2006

Formula

a(n) = A003418(n) * n. - Martin Fuller, Jan 03 2006

Extensions

More terms from Paul Barry, Aug 06 2004
Entry revised by N. J. A. Sloane, Jan 15 2006

A349257 Largest integer that can be expressed as Sum_{k=1..n} k/p(k), where p is a permutation of [n].

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 10, 11, 15, 18, 21, 22, 27, 28, 32, 36, 40, 41, 46, 47
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2021

Keywords

Crossrefs

Programs

  • Ruby
    def A(n)
      max = 0
      (1..n).to_a.permutation{|i|
        m = (1..n).inject(0){|s, j| s + j / i[j - 1].to_r}
        if m.denominator == 1
          max = m if max < m
        end
      }
      max.to_i
    end
    def A349257(n)
      (0..n).map{|i| A(i)}
    end
    p A349257(8)

Formula

a(n) = 1 + a(n-1) if n is prime. - Alois P. Heinz, Nov 12 2021

Extensions

a(12)-a(19) from Alois P. Heinz, Nov 12 2021

A225154 Floor(Sum_{i=1..n} (Sum_{j=1..i} sqrt(1/j))).

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 18, 23, 27, 32, 38, 43, 49, 55, 62, 68, 75, 82, 90, 97, 105, 113, 121, 130, 138, 147, 156, 166, 175, 185, 194, 204, 214, 225, 235, 246, 257, 267, 279, 290, 301, 313, 325, 336, 349, 361, 373, 385, 398
Offset: 1

Views

Author

Balarka Sen, Apr 30 2013

Keywords

Comments

The fact that a(n)/n diverges (it is greater than sqrt(n)) implies sum_{k>=1} 1/sqrt(k) is not Cesaro summable.

Crossrefs

Programs

  • PARI
    for(n=1,100,print1(floor(sum(i=1,n,sum(j=1,i,1/sqrt(j))))","))
    
  • PARI
    a(n)=sum(j=1,n,(n+1-j)/sqrt(j))\1 \\ Charles R Greathouse IV, May 02 2013

Formula

a(n) ~ 2*Sum_{k=1..n} sqrt(k) ~ (4/3) n^(3/2).
Showing 1-6 of 6 results.