A225808 Values (Sum_{1<=i<=k} x_i)^2 = Sum_{1<=i<=k} x_i^3 for 1 <= x_1 <= x_2 <=...<= x_k ordered lexicographically according to (x1, x2,..., xk).
1, 9, 16, 36, 81, 81, 100, 144, 256, 169, 225, 324, 361, 625, 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296, 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089
Offset: 1
Examples
1; 9, 16; 36, 81; 81, 100, 144, 256; 169, 225, 324, 361, 625; 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296; 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089, 1600, 1296, 1600, 2025, 2401;
Links
- Balarka Sen, Rows n = 1..10 of irregular triangle, flattened
- Edward Barbeau and Samer Seraj, Sum of cubes is square of sum, arXiv:1306.5257 [math.NT], 2013.
- John Mason, Generalising 'sums of cubes equal to squares of sums', The Mathematical Gazette 85:502 (2001), pp. 50-58.
- Alasdair McAndrew, A cute result relating to sums of cubes
- David Pagni, 82.27 An interesting number fact, The Mathematical Gazette 82:494 (1998), pp. 271-273.
- Balarka Sen, Table of rows, n = 1..10
- W. R. Utz, The Diophantine Equation (x_1 + x_2 + ... + x_n)^2 = x_1^3 + x_2^3 + ... + x_n^3, Fibonacci Quarterly 15:1 (1977), pp. 14, 16. Part 1, part 2.
Programs
-
Mathematica
row[n_] := Reap[Module[{v, m}, v = Table[1, {n}]; m = n^(4/3); While[ v[[-1]] < m, v[[1]]++; If[v[[1]] > m, For[i = 2, i <= m, i++, If[v[[i]] < m, v[[i]]++; For[j = 1, j <= i - 1, j++, v[[j]] = v[[i]]]; Break[]]]]; If[Total[v^3] == Total[v]^2, Sow[Total[v]^2]]]]][[2, 1]]; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 23 2019, from PARI *)
-
PARI
row(n)=my(v=vector(n,i,1),N=n^(4/3)); while(v[#v]
N,for(i=2, N,if(v[i]
Comments