cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Balarka Sen

Balarka Sen's wiki page.

Balarka Sen has authored 19 sequences. Here are the ten most recent ones:

A225808 Values (Sum_{1<=i<=k} x_i)^2 = Sum_{1<=i<=k} x_i^3 for 1 <= x_1 <= x_2 <=...<= x_k ordered lexicographically according to (x1, x2,..., xk).

Original entry on oeis.org

1, 9, 16, 36, 81, 81, 100, 144, 256, 169, 225, 324, 361, 625, 144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296, 484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089
Offset: 1

Author

Keywords

Comments

a(n) <= k^4 where k is the size of the ordered tuple (x_1, x_2,..., x_k).
This sequence is closed under multiplication, that is, if m and n are in this sequence, so is m*n.

Examples

			1;
9, 16;
36, 81;
81, 100, 144, 256;
169, 225, 324, 361, 625;
144, 256, 324, 441, 324, 361, 441, 625, 256, 576, 729, 784, 576, 729, 900, 961, 1089, 1296;
484, 625, 784, 900, 484, 441, 576, 729, 784, 900, 1089, 1089, 1156, 1369, 625, 784, 729, 900, 1089, 1369, 1296, 1600, 900, 961, 1089, 1600, 1296, 1600, 2025, 2401;
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Reap[Module[{v, m}, v = Table[1, {n}]; m = n^(4/3); While[ v[[-1]] < m, v[[1]]++; If[v[[1]] > m, For[i = 2, i <= m, i++, If[v[[i]] < m, v[[i]]++; For[j = 1, j <= i - 1, j++, v[[j]] = v[[i]]]; Break[]]]]; If[Total[v^3] == Total[v]^2, Sow[Total[v]^2]]]]][[2, 1]];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 23 2019, from PARI *)
  • PARI
    row(n)=my(v=vector(n,i,1),N=n^(4/3)); while(v[#v]N,for(i=2, N,if(v[i]
    				

A225819 Consider the set of n-tuples such that the sum of cubes of the elements is equal to square of their sum; sequence gives largest element in all such tuples.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 115, 117, 120, 123, 126, 129, 132, 134, 137, 140, 143, 146, 149, 152, 155
Offset: 1

Author

Keywords

Comments

Conjecture [Sen]: lim inf log_n a(n) >= 5/4.

Examples

			Call an n-multiset with the sum of cubes of the elements equal to square of their sum an n-SCESS.
a(6) = 7 since the only 6-SCESS with the largest element >= 7 are (2, 4, 4, 5, 5, 7), (3, 3, 3, 3, 5, 7), (3, 4, 5, 5, 6, 7), (3, 5, 5, 5, 6, 7) and (4, 5, 5, 6, 6, 7) and none have an element larger than 7.
a(7) = 9 since the only 7-SCESS with the largest element >= 9 are (4, 4, 4, 5, 5, 5, 9), (4, 5, 5, 5, 6, 6, 9) and (6, 6, 6, 6, 6, 6, 9) and none have an element larger than 9.
a(8) = 10 since the only 8-SCESS with the largest element >= 10 are (2, 5, 5, 5, 5, 5, 6, 10), (2, 6, 6, 6, 6, 6, 6, 10), (3, 4, 5, 5, 5, 6, 7, 10), (3, 4, 5, 5, 6, 6, 7, 10), (3, 5, 5, 5, 6, 7, 7, 10), (3, 6, 6, 6, 7, 7, 7, 10), (4, 4, 4, 4, 4, 4, 6, 10), (4, 4, 4, 4, 5, 5, 7, 10), (4, 5, 5, 6, 6, 7, 8, 10), (5, 5, 5, 7, 7, 7, 8, 10) and (6, 6, 6, 6, 6, 6, 9, 10) and none have an element larger than 10.
		

Crossrefs

Programs

  • PARI
    a(n)=my(v=vector(n, i, 1), N=n^(4/3), m=n); while(v[#v]N, for(i=2, N, if(v[i]
    				

Formula

n <= a(n) <= n^(4/3), see A158649.

A225567 Primes with nonzero digits such that sum of cubes of digits equal to square of sums.

Original entry on oeis.org

1423, 2143, 2341, 4231, 12253, 21523, 22153, 22531, 23251, 25321, 32251, 35221, 36343, 36433, 43633, 52321, 64333, 114451, 144511, 224461, 244261, 246241, 365557, 415141, 424261, 426421, 446221, 446461, 451411, 462421, 466441, 541141, 555637, 556537, 556573
Offset: 1

Author

Balarka Sen, Jul 26 2013

Keywords

Comments

Largest term of this sequence is the 20-digit prime 99151111111111111111.
The Pagni article mentioned below has no bearing on this problem because it deals with the well-known identity sum_{i=1..n} i^3 = (sum_{i=1..n} i)^2. However, the article is interesting. - T. D. Noe, Jul 26 2013
This sequence has exactly 14068465 provable primes. This result required about one hour of Mathematica on fairly fast computer having 16 GB of memory. - T. D. Noe, Jul 30 2013

Examples

			a(5) = 12253 since 1^3 + 2^3 + 2^3 + 5^3 + 3^3 = (1 + 2 + 2 + 5 + 3)^2.
		

Crossrefs

Cf. A055012 (sum of cubes of digits), A118881 (square of sum of the digits).

Programs

  • Mathematica
    (* let tz[[i]] be numbers computed in A227073 *) Select[tz, PrimeQ] (* T. D. Noe, Jul 30 2013 *)
    pQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&Total[idn^3] == Total[ idn]^2]; Select[Prime[Range[50000]],pQ] (* Harvey P. Dale, Sep 17 2013 *)
  • PARI
    forprime(n=1, 10^7, v=digits(n); if(sum(i=1, length(v), v[i]^3)==sum(i=1, length(v), v[i])^2 & setsearch(Set(v),0)!=1, print1(n", ")))

Extensions

Corrected by T. D. Noe, Jul 26 2013

A225572 Continued fraction expansion of Pi/(4*e) + e/(3*Pi).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 5, 3, 1, 2, 2, 1, 1, 24, 1, 2, 2, 9, 78, 1, 94, 5, 1, 27, 2, 1, 1, 2, 1, 4, 2, 2, 2, 20, 1, 4, 1, 1, 5, 23, 43, 1, 9, 1, 3, 1, 3, 1, 2, 1, 2, 4, 1, 1, 3, 8, 32, 1, 7, 1
Offset: 0

Author

Balarka Sen, May 11 2013, based on an idea from Jimmy Zotos

Keywords

Comments

The first five terms match with the continued fraction of the Euler-Mascheroni constant. See analogous comment in A225155.

Crossrefs

Cf. A225155.

Programs

  • Mathematica
    ContinuedFraction[Pi/(4E)+E/(3Pi),100] (* Harvey P. Dale, Oct 22 2023 *)
  • PARI
    default(realprecision, 300); contfrac(Pi/(4*exp(1))+exp(1)/(3*Pi))

A225037 Decimal expansion of the number Sum_{n>=1} ksexp(n,3/2)^(-1).

Original entry on oeis.org

1, 6, 8, 7, 6, 3, 5, 2, 1, 5, 1, 1, 9, 1, 1, 2, 4, 6, 5, 5, 1, 8, 8, 9, 4, 9, 7, 2, 8, 2, 4, 3
Offset: 1

Author

Balarka Sen, Apr 25 2013

Keywords

Comments

The function 'ksexp' is the n-base Kneser tetration, see references below.

Examples

			1.687635215119112465518894...
		

References

  • Hellmuth Kneser, Reelle analytische Lösungen der Gleichung phi(phi(x))=e^x und verwandter Funktionalgleichungen. J. Reine Angew. Math., 187 (1949), 56-67.
  • H. Trappmann & D. Kouznetsov, Uniqueness of Holomorphic Superlogarithms (2009)

Programs

  • PARI
    \\ Download the algorithm for ksexp (see the link)
    \r kneserquiet.gp; \\ Load the algorithm
    b(i)=init(i); sexp(3/2)
    return(1+sumalt(i=1,1/b(i)));

A221648 Floor(integral_{n=0..infinity} (log(x) - log(1 + x^2))^n/(1 + x^2)^2 dx).

Original entry on oeis.org

0, -2, 2, -7, 24, -121, 720, -5042, 40324, -362893, 3628841, -39916952, 479002203, -6227023411, 87178303368, -1307674428809, 20922790212198, -355687429932747, 6402373716747122, -121645100478614633, 2432902008641837022, -51090942174965733088, 1124000727801486784372
Offset: 0

Author

Balarka Sen, May 04 2013

Keywords

Programs

  • PARI
    default(realprecision,100);for(n=0,50,print1(floor(intnum(x=0,oo,log(x/(1+x^2))^n/(1+x^2)^2))", "))

A225154 Floor(Sum_{i=1..n} (Sum_{j=1..i} sqrt(1/j))).

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 18, 23, 27, 32, 38, 43, 49, 55, 62, 68, 75, 82, 90, 97, 105, 113, 121, 130, 138, 147, 156, 166, 175, 185, 194, 204, 214, 225, 235, 246, 257, 267, 279, 290, 301, 313, 325, 336, 349, 361, 373, 385, 398
Offset: 1

Author

Balarka Sen, Apr 30 2013

Keywords

Comments

The fact that a(n)/n diverges (it is greater than sqrt(n)) implies sum_{k>=1} 1/sqrt(k) is not Cesaro summable.

Crossrefs

Programs

  • PARI
    for(n=1,100,print1(floor(sum(i=1,n,sum(j=1,i,1/sqrt(j))))","))
    
  • PARI
    a(n)=sum(j=1,n,(n+1-j)/sqrt(j))\1 \\ Charles R Greathouse IV, May 02 2013

Formula

a(n) ~ 2*Sum_{k=1..n} sqrt(k) ~ (4/3) n^(3/2).

A225088 Floor(ksexp(n, 13/10)) where ksexp(n, z) = n^ksexp(n, z-1) is Kneser's superexponential.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 29, 38, 47, 59, 72, 86, 102, 121, 141, 163, 187, 214, 243, 274, 308, 345, 385, 427, 473, 521, 573, 628, 687, 749, 815, 885, 959, 1037, 1119, 1206, 1297, 1393, 1493, 1598, 1708, 1824, 1944, 2070, 2202, 2339, 2482, 2631, 2785, 2947, 3114
Offset: 1

Author

Balarka Sen, Apr 27 2013

Keywords

References

  • Hellmuth Kneser, Reelle analytische Lösungen der Gleichung ϕ(ϕ(x)) = e^x und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1949), 56-67.

Crossrefs

A225087 Floor(ksexp(n,12/10)) where ksexp(n, z) = n^ksexp(n, z-1) is Kneser's superexponential.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 14, 17, 21, 25, 29, 34, 39, 45, 51, 57, 63, 70, 77, 85, 92, 101, 109, 118, 127, 137, 147, 157, 168, 179, 190, 202, 214, 226, 239, 252, 266, 280, 294, 309, 324, 339, 355, 371, 387, 404, 422, 439, 457, 476, 494, 514, 533, 553, 574, 594, 615
Offset: 1

Author

Balarka Sen, Apr 27 2013

Keywords

References

  • Hellmuth Kneser, Reelle analytische Lösungen der Gleichung ϕ(ϕ(x)) = e^x und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1949), 56-67.

Crossrefs

A225086 Floor(ksexp(n,11/10)) where ksexp(n, z) = n^ksexp(n, z-1) is Kneser's superexponential.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 28, 30, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 87, 90, 93, 96, 100, 103, 106, 110, 113, 117, 120, 124, 128, 131, 135, 139, 142, 146, 150, 154, 157, 161, 165, 169, 173, 177
Offset: 1

Author

Balarka Sen, Apr 27 2013

Keywords

References

  • Hellmuth Kneser, Reelle analytische Lösungen der Gleichung ϕ(ϕ(x)) = e^x und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1949), 56-67.

Crossrefs