cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A225819 Consider the set of n-tuples such that the sum of cubes of the elements is equal to square of their sum; sequence gives largest element in all such tuples.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46, 48, 51, 53, 55, 58, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 88, 90, 93, 96, 98, 101, 104, 106, 109, 112, 115, 117, 120, 123, 126, 129, 132, 134, 137, 140, 143, 146, 149, 152, 155
Offset: 1

Views

Author

Keywords

Comments

Conjecture [Sen]: lim inf log_n a(n) >= 5/4.

Examples

			Call an n-multiset with the sum of cubes of the elements equal to square of their sum an n-SCESS.
a(6) = 7 since the only 6-SCESS with the largest element >= 7 are (2, 4, 4, 5, 5, 7), (3, 3, 3, 3, 5, 7), (3, 4, 5, 5, 6, 7), (3, 5, 5, 5, 6, 7) and (4, 5, 5, 6, 6, 7) and none have an element larger than 7.
a(7) = 9 since the only 7-SCESS with the largest element >= 9 are (4, 4, 4, 5, 5, 5, 9), (4, 5, 5, 5, 6, 6, 9) and (6, 6, 6, 6, 6, 6, 9) and none have an element larger than 9.
a(8) = 10 since the only 8-SCESS with the largest element >= 10 are (2, 5, 5, 5, 5, 5, 6, 10), (2, 6, 6, 6, 6, 6, 6, 10), (3, 4, 5, 5, 5, 6, 7, 10), (3, 4, 5, 5, 6, 6, 7, 10), (3, 5, 5, 5, 6, 7, 7, 10), (3, 6, 6, 6, 7, 7, 7, 10), (4, 4, 4, 4, 4, 4, 6, 10), (4, 4, 4, 4, 5, 5, 7, 10), (4, 5, 5, 6, 6, 7, 8, 10), (5, 5, 5, 7, 7, 7, 8, 10) and (6, 6, 6, 6, 6, 6, 9, 10) and none have an element larger than 10.
		

Crossrefs

Programs

  • PARI
    a(n)=my(v=vector(n, i, 1), N=n^(4/3), m=n); while(v[#v]N, for(i=2, N, if(v[i]
    				

Formula

n <= a(n) <= n^(4/3), see A158649.
Showing 1-1 of 1 results.