cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A109613 Odd numbers repeated.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
Offset: 0

Author

Reinhard Zumkeller, Aug 01 2005

Keywords

Comments

The number of rounds in a round-robin tournament with n competitors. - A. Timothy Royappa, Aug 13 2011
Diagonal sums of number triangle A113126. - Paul Barry, Oct 14 2005
When partitioning a convex n-gon by all the diagonals, the maximum number of sides in resulting polygons is 2*floor(n/2)+1 = a(n-1) (from Moscow Olympiad problem 1950). - Tanya Khovanova, Apr 06 2008
The inverse values of the coefficients in the series expansion of f(x) = (1/2)*(1+x)*log((1+x)/(1-x)) lead to this sequence; cf. A098557. - Johannes W. Meijer, Nov 12 2009
From Reinhard Zumkeller, Dec 05 2009: (Start)
First differences: A010673; partial sums: A000982;
A059329(n) = Sum_{k = 0..n} a(k)*a(n-k);
A167875(n) = Sum_{k = 0..n} a(k)*A005408(n-k);
A171218(n) = Sum_{k = 0..n} a(k)*A005843(n-k);
A008794(n+2) = Sum_{k = 0..n} a(k)*A059841(n-k). (End)
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(5). - Michael Somos, May 29 2013
For n > 4: a(n) = A230584(n) - A230584(n-2). - Reinhard Zumkeller, Feb 10 2015
The arithmetic function v+-(n,2) as defined in A290988. - Robert Price, Aug 22 2017
For n > 0, also the chromatic number of the (n+1)-triangular (Johnson) graph. - Eric W. Weisstein, Nov 17 2017
a(n-1), for n >= 1, is also the upper bound a_{up}(b), where b = 2*n + 1, in the first (top) row of the complete coach system Sigma(b) of Hilton and Pedersen [H-P]. All odd numbers <= a_{up}(b) of the smallest positive restricted residue system of b appear once in the first rows of the c(2*n+1) = A135303(n) coaches. If b is an odd prime a_{up}(b) is the maximum. See a comment in the proof of the quasi-order theorem of H-P, on page 263 ["Furthermore, every possible a_i < b/2 ..."]. For an example see below. - Wolfdieter Lang, Feb 19 2020
Satisfies the nested recurrence a(n) = a(a(n-2)) + 2*a(n-a(n-1)) with a(0) = a(1) = 1. Cf. A004001. - Peter Bala, Aug 30 2022
The binomial transform is 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560,.. (see A057711). - R. J. Mathar, Feb 25 2023

Examples

			G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - _Wolfdieter Lang_, Feb 19 2020
		

References

  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).

Crossrefs

Complement of A052928 with respect to the universe A004526. - Guenther Schrack, Aug 21 2018
First differences of A000982, A061925, A074148, A105343, A116940, and A179207. - Guenther Schrack, Aug 21 2018

Programs

Formula

a(n) = 2*floor(n/2) + 1.
a(n) = A052928(n) + 1 = 2*A004526(n) + 1.
a(n) = A028242(n) + A110654(n).
a(n) = A052938(n-2) + A084964(n-2) for n > 1. - Reinhard Zumkeller, Aug 27 2005
G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005
a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008
a(n) = A001477(n) + A059841(n). - Philippe Deléham, Mar 31 2009
a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010
a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012
a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012
G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016
E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016
From Guenther Schrack, Sep 10 2018: (Start)
a(-n) = -a(n-1).
a(n) = A047270(n+1) - (2*n + 2).
a(n) = A005408(A004526(n)). (End)
a(n) = A000217(n) / A004526(n+1), n > 0. - Torlach Rush, Nov 10 2023

A047838 a(n) = floor(n^2/2) - 1.

Original entry on oeis.org

1, 3, 7, 11, 17, 23, 31, 39, 49, 59, 71, 83, 97, 111, 127, 143, 161, 179, 199, 219, 241, 263, 287, 311, 337, 363, 391, 419, 449, 479, 511, 543, 577, 611, 647, 683, 721, 759, 799, 839, 881, 923, 967, 1011, 1057, 1103, 1151, 1199, 1249, 1299, 1351, 1403
Offset: 2

Author

Michael Somos, May 07 1999

Keywords

Comments

Define the organization number of a permutation pi_1, pi_2, ..., pi_n to be the following. Start at 1, count the steps to reach 2, then the steps to reach 3, etc. Add them up. Then the maximal value of the organization number of any permutation of [1..n] for n = 0, 1, 2, 3, ... is given by 0, 1, 3, 7, 11, 17, 23, ... (this sequence). This was established by Graham Cormode (graham(AT)research.att.com), Aug 17 2006, see link below, answering a question raised by Tom Young (mcgreg265(AT)msn.com) and Barry Cipra, Aug 15 2006
From Dmitry Kamenetsky, Nov 29 2006: (Start)
This is the length of the longest non-self-intersecting spiral drawn on an n X n grid. E.g., for n=5 the spiral has length 17:
1 0 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1 (End)
It appears that a(n+1) is the maximum number of consecutive integers (beginning with 1) that can be placed, one after another, on an n-peg Towers of Hanoi, such that the sum of any two consecutive integers on any peg is a square. See the problem: http://online-judge.uva.es/p/v102/10276.html. - Ashutosh Mehra, Dec 06 2008
a(n) = number of (w,x,y) with all terms in {0,...,n} and w = |x+y-w|. - Clark Kimberling, Jun 11 2012
The same sequence also represents the solution to the "pigeons problem": maximal value of the sum of the lengths of n-1 line segments (connected at their end-points) required to pass through n trail dots, with unit distance between adjacent points, visiting all of them without overlaping two or more segments. In this case, a(0)=0, a(1)=1, a(2)=3, and so on. - Marco Ripà, Jan 28 2014
Also the longest path length in the n X n white bishop graph. - Eric W. Weisstein, Mar 27 2018
a(n) is the number of right triangles with sides n*(h-floor(h)), floor(h) and h, where h is the hypotenuse. - Andrzej Kukla, Apr 14 2021

Examples

			x^2 + 3*x^3 + 7*x^4 + 11*x^5 + 17*x^6 + 23*x^7 + 31*x^8 + 39*x^9 + 49*x^10 + ...
		

Crossrefs

Complement of A047839. First difference is A052928.
Partial sums: A213759(n-1) for n > 1. - Guenther Schrack, May 12 2018

Programs

  • Magma
    [Floor(n^2/2)-1 : n in [2..100]]; // Wesley Ivan Hurt, Aug 06 2015
  • Maple
    seq(floor((n^2+4*n+2)/2), n=0..20) # Gary Detlefs, Feb 10 2010
  • Mathematica
    Table[Floor[n^2/2] - 1, {n, 2, 60}] (* Robert G. Wilson v, Aug 31 2006 *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 3, 7, 11}, 60] (* Harvey P. Dale, Jan 16 2015 *)
    Floor[Range[2, 20]^2/2] - 1 (* Eric W. Weisstein, Mar 27 2018 *)
    Table[((-1)^n + 2 n^2 - 5)/4, {n, 2, 20}] (* Eric W. Weisstein, Mar 27 2018 *)
    CoefficientList[Series[(-1 - x - x^2 + x^3)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
  • PARI
    a(n) = n^2\2 - 1
    

Formula

a(2)=1; for n > 2, a(n) = a(n-1) + n - 1 + (n-1 mod 2). - Benoit Cloitre, Jan 12 2003
a(n) = T(n-1) + floor(n/2) - 1 = T(n) - floor((n+3)/2), where T(n) is the n-th triangular number (A000217). - Robert G. Wilson v, Aug 31 2006
Equals (n-1)-th row sums of triangles A134151 and A135152. Also, = binomial transform of [1, 2, 2, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Nov 21 2007
G.f.: x^2*(1+x+x^2-x^3)/((1-x)^3*(1+x)). - R. J. Mathar, Sep 09 2008
a(n) = floor((n^2 + 4*n + 2)/2). - Gary Detlefs, Feb 10 2010
a(n) = abs(A188653(n)). - Reinhard Zumkeller, Apr 13 2011
a(n) = (2*n^2 + (-1)^n - 5)/4. - Bruno Berselli, Sep 14 2011
a(n) = a(-n) = A007590(n) - 1.
a(n) = A080827(n) - 2. - Kevin Ryde, Aug 24 2013
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4. - Wesley Ivan Hurt, Aug 06 2015
a(n) = A000217(n-1) + A004526(n-2), for n > 1. - J. Stauduhar, Oct 20 2017
From Guenther Schrack, May 12 2018: (Start)
Set a(0) = a(1) = -1, a(n) = a(n-2) + 2*n - 2 for n > 1.
a(n) = A000982(n-1) + n - 2 for n > 1.
a(n) = 2*A033683(n) - 3 for n > 1.
a(n) = A061925(n-1) + n - 3 for n > 1.
a(n) = A074148(n) - n - 1 for n > 1.
a(n) = A105343(n-1) + n - 4 for n > 1.
a(n) = A116940(n-1) - n for n > 1.
a(n) = A179207(n) - n + 1 for n > 1.
a(n) = A183575(n-2) + 1 for n > 2.
a(n) = A265284(n-1) - 2*n + 1 for n > 1.
a(n) = 2*A290743(n) - 5 for n > 1. (End)
E.g.f.: 1 + x + ((x^2 + x - 2)*cosh(x) + (x^2 + x - 3)*sinh(x))/2. - Stefano Spezia, May 06 2021
Sum_{n>=2} 1/a(n) = 3/2 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)) - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Sep 15 2022

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A061925 a(n) = ceiling(n^2/2) + 1.

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, 1302, 1353, 1406
Offset: 0

Author

Henry Bottomley, May 17 2001

Keywords

Comments

a(n+1) gives index of the first occurrence of n in A100795. - Amarnath Murthy, Dec 05 2004
First term in each group in A074148. - Amarnath Murthy, Aug 28 2002
From Christian Barrientos, Jan 01 2021: (Start)
For n >= 3, a(n) is the number of square polyominoes with at least 2n - 2 cells whose bounding box has size 2 X n.
For n = 3, there are 6 square polyominoes with a bounding box of size 2 X 3:
_ _ _ _ _
|||_| |||_| |||_| |||_| |||_| |||_
|||_| ||| || || || || |||
(End)
Except for a(2), a(n) agrees with the lower matching number of the (n+1) X (n+1) bishop graph up to at least n = 13. - Eric W. Weisstein, Dec 23 2024

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*floor((n-1)/2) + 1 = A061926(3, k) = 2*A002620(n+1) - (n-1) = A000982(n) + 1.
a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n).
a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1).
a(n) = floor((n^2+3)/2). - Gary Detlefs, Feb 13 2010
From R. J. Mathar, Feb 19 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End)
a(n) = (2*n^2 - (-1)^n + 5)/4. - Bruno Berselli, Sep 29 2011
a(n) = A007590(n+1) - n + 1. - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A027688(n). a(n+1) - a(n) = A109613(n). - R. J. Mathar, Jul 20 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - Stefano Spezia, May 07 2021

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 09 2007

A099392 a(n) = floor((n^2 - 2*n + 3)/2).

Original entry on oeis.org

1, 1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405
Offset: 1

Author

Ralf Stephan following a suggestion from Luke Pebody, Oct 20 2004

Keywords

Crossrefs

Differs from A085913 at n = 61. Apart from leading term, identical to A080827.
Cf. A000217, A001844, A002522, A007494, A007590, A058331 (bisections).
From Guenther Schrack, Apr 17 2018: (Start)
First differences: A052928.
Partial sums: A212964(n) + n for n > 0.
Also A058331 and A001844 interleaved. (End)

Programs

  • Mathematica
    Array[Floor[(#^2 - 2 # + 3)/2] &, 54] (* or *)
    Rest@ CoefficientList[Series[x (-1 + x - x^2 - x^3)/((1 + x) (x - 1)^3), {x, 0, 54}], x] (* Michael De Vlieger, Apr 21 2018 *)
  • PARI
    a(n)=(n^2+3)\2-n \\ Charles R Greathouse IV, Aug 01 2013

Formula

a(n) = ceiling(n^2/2)-n+1. - Paul Barry, Jul 16 2006; index shifted by R. J. Mathar, Jul 29 2007
a(n) = ceiling(A002522(n-1)/2). - Branko Curgus, Sep 02 2007
From R. J. Mathar, Feb 20 2011: (Start)
G.f.: x *( -1+x-x^2-x^3 ) / ( (1+x)*(x-1)^3 ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n+1) = (3 + 2*n^2 + (-1)^n)/4. (End)
a(n) = A007590(n-1) + 1 for n >= 2. - Richard R. Forberg, Aug 01 2013
a(n) = A000217(n) - A007494(n-1). - Bui Quang Tuan, Mar 27 2015
From Guenther Schrack, Apr 17 2018: (Start)
a(n) = (2*n^2 - 4*n + 5 -(-1)^n)/4.
a(n+2) = a(n) + 2*n for n > 0.
a(n) = 2*A033683(n-1) - 1 for n > 0.
a(n) = A047838(n-1) + 2 for n > 2.
a(n) = A074148(n-1) - n + 2 for n > 1.
a(n) = A183575(n-3) + 3 for n > 3.
a(n) = 2*A290743(n-1) - 3 for n > 0.
a(n) = 2*A290743(n-2) + A109613(n-5) for n > 4.
a(n) = A074148(n) - A014601(n-1) for n > 0. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 16 2022
E.g.f.: ((2 - x + x^2)*cosh(x) + (3 - x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 28 2024

A074147 (2n-1) odd numbers followed by 2n even numbers.

Original entry on oeis.org

1, 2, 4, 3, 5, 7, 6, 8, 10, 12, 9, 11, 13, 15, 17, 14, 16, 18, 20, 22, 24, 19, 21, 23, 25, 27, 29, 31, 26, 28, 30, 32, 34, 36, 38, 40, 33, 35, 37, 39, 41, 43, 45, 47, 49, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 62, 64, 66, 68, 70, 72
Offset: 1

Author

Amarnath Murthy, Aug 28 2002

Keywords

Examples

			As a triangular array:
1,
2, 4,
3, 5, 7,
6, 8, 10, 12,
9, 11, 13, 15, 17,
14, 16, 18, 20, 22, 24,
...
		

Crossrefs

Cf. A074148, A074149 (row sums), A001614.

Programs

  • Maple
    A074147 := proc(n,k)
        ceil((n-1)^2/2)+1+2*k ;
    end proc:
    seq(seq( A074147(n,k),k=0..n-1) ,n=1..12) ; # R. J. Mathar, Nov 02 2023
  • Mathematica
    Flatten@Table[Ceiling[(n - 1)^2/2] + 2 k - 1, {n, 12}, {k, n}] (* Ivan Neretin, Dec 15 2016 *)

Formula

T(n,k) = A061925(n-1)+2k, 0<=kR. J. Mathar, Jul 17 2007, corrected Nov 02 2023
a(n) = A116941(n-1)+1. - Robert G. Wilson v, Mar 09 2017

A188236 T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero and not more than two numbers equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 15, 1, 5, 12, 30, 58, 1, 6, 17, 52, 119, 245, 1, 7, 24, 81, 221, 527, 1082, 1, 8, 31, 121, 374, 1019, 2395, 5020, 1, 9, 40, 172, 598, 1818, 4818, 11376, 24040, 1, 10, 49, 234, 903, 3047, 8964, 23522, 55368, 118154, 1, 11, 60, 311, 1317, 4859
Offset: 1

Author

R. H. Hardin Mar 24 2011

Keywords

Comments

Table starts
......1......1......1.......1.......1.......1.......1........1........1
......2......3......4.......5.......6.......7.......8........9.......10
......4......7.....12......17......24......31......40.......49.......60
.....15.....30.....52......81.....121.....172.....234......311......403
.....58....119....221.....374.....598.....903....1317.....1852.....2540
....245....527...1019....1818....3047....4859....7435....10994....15791
...1082...2395...4818....8964...15696...26123...41748....64370....96346
...5020..11376..23522...45225...81981..141519..234413...374820...581280
..24040..55368.117209..231596..432491..769915.1316060..2171675..3475284
.118154.275735.594789.1202495.2302608.4209720.7395049.12546170.20642874

Examples

			Some solutions for n=6 k=4
.-7...-8...-5...-8...-5...-7...-7...-3...-8...-8...-6...-6...-5...-7...-6...-5
.-4...-8...-3...-5...-5...-7...-4...-3...-4...-8...-6...-4...-4...-4...-2...-5
..0...-4...-2...-4...-1...-1....1....1....0....0....2...-4....1....0...-1....1
..2....6....0....3....1....0....2....1....3....2....2....2....1....1...-1....1
..3....7....4....7....3....7....2....2....4....7....3....4....3....3....3....4
..6....7....6....7....7....8....6....2....5....7....5....8....4....7....7....4
		

Crossrefs

Row 3 is A074148(n+1)

A229093 The clubs patterns appearing in n X n coins.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
Offset: 0

Author

Kival Ngaokrajang, Sep 13 2013

Keywords

Comments

On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of clubs patterns appearing in n X n coins. It is also A008810(n-1), except for the third term. The inverse patterns (stars or voids between clubs) is A030511 (except the second term). See illustration in links.

Crossrefs

Cf. A008810, A030511, A074148 (heart patterns), A227906, A229154.

Programs

  • Mathematica
    CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 08 2013 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,0,1,2,4,6,9,12,17,22},70] (* Harvey P. Dale, Feb 05 2020 *)
  • PARI
    Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
    
  • PARI
    a(n) = ceil((n-1)^2/3) \\ Charles R Greathouse IV, Jan 06 2016

Formula

a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.
G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 07 2013

Extensions

More terms from Colin Barker, Oct 08 2013

A105636 Transform of n^3 by the Riordan array (1/(1-x^2), x).

Original entry on oeis.org

0, 1, 8, 28, 72, 153, 288, 496, 800, 1225, 1800, 2556, 3528, 4753, 6272, 8128, 10368, 13041, 16200, 19900, 24200, 29161, 34848, 41328, 48672, 56953, 66248, 76636, 88200, 101025, 115200, 130816, 147968, 166753, 187272, 209628, 233928, 260281, 288800, 319600
Offset: 0

Author

Paul Barry, Apr 16 2005

Keywords

Comments

Recurrence a(n) = a(n-2) + n^3, starting with a(0)=0, a(1)=1. Also, in physics, a(n)/4 is the trace of the spin operator |S_z|^3 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of the absolute values of their 3rd powers is 2*28/8 = a(3)/4. - Stanislav Sykora, Nov 07 2013
Also the number of 3-cycles in the (n+1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017
With zero prepended and offset 1, the sequence starts 0,0,1,8,28,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q). Then b(n) is the total volume of the family of cubes with side length |q - p|. - Wesley Ivan Hurt, Apr 14 2018

Crossrefs

Cf. A289705 (4-cycles), A289706 (5-cycles), A289707 (6-cycles).

Programs

  • GAP
    List([0..30], n -> (2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16); # G. C. Greubel, Dec 16 2018
  • Magma
    [(2*n^4+8*n^3+8*n^2-1)/16+(-1)^n/16: n in [0..50]]; // Vincenzo Librandi, Oct 27 2014
    
  • Mathematica
    LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 8, 28, 72, 153}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
    CoefficientList[Series[x (1 + 4 x + x^2)/((1 + x) (1 - x)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2012 *)
    Table[((-1)^n + 2 n^2 (n + 2)^2 - 1)/16, {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x*(1+4*x+x^2)/((1+x)*(1-x)^5))) \\ Altug Alkan, Apr 16 2018
    
  • Sage
    [(2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16 for n in range(30)] # G. C. Greubel, Dec 16 2018
    

Formula

G.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
a(n) = (2*n^4 + 8*n^3 + 8*n^2 - 1 + (-1)^n)/16.
a(n) = Sum_{k=0..floor((n-1)/2)} (n-2*k)^3.
a(n+1) = Sum_{k=0..n} k^3*(1 - (-1)^(n+k-1))/2.
a(n) = ((((x^2 - (x mod 2) - 4)/4)^2 - (((x^2 - (x mod 2) - 4)/4) mod 2))/8) = floor(((floor(x^2/4) - 1)^2)/8) where x = 2*n + 2. Replace x with 2*n - 1 to obtain A050534(n) = 3*A000332(n+1). Note that a(2*n) = A060300(n)/2 and a(2*n + 1) = A002593(n+1). - Raphie Frank, Jan 30 2014
a(n) = floor(1/(exp(2/n^2) - 1)^2)/2. Also a(n) = A007590(n+1)*A074148(n-1)/2. - Richard R. Forberg, Oct 26 2014
Sum_{n>=1} 1/a(n) = -cot(Pi/sqrt(2))*Pi/sqrt(2) - 1/2. - Amiram Eldar, Aug 25 2022

A209344 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 4, 4, 1, 5, 7, 15, 5, 1, 6, 12, 35, 40, 14, 1, 7, 17, 72, 145, 146, 21, 1, 8, 24, 128, 400, 770, 514, 51, 1, 9, 31, 205, 883, 2698, 4029, 2032, 102, 1, 10, 40, 311, 1724, 7358, 18646, 22739, 8076, 249, 1, 11, 49, 448, 3045, 16968, 62853, 136000
Offset: 1

Author

R. H. Hardin, Mar 06 2012

Keywords

Examples

			Table starts:
..1....1.....1......1......1.......1.......1........1........1........1
..2....3.....4......5......6.......7.......8........9.......10.......11
..1....4.....7.....12.....17......24......31.......40.......49.......60
..4...15....35.....72....128.....205.....311......448......618......829
..5...40...145....400....883....1724....3045.....5026.....7827....11684
.14..146...770...2698...7358...16968...34720....64942...113288...186906
.21..514..4029..18646..62853..172610..409199...870122..1699831..3104474
.51.2032.22739.136000.563109.1830872.5016681.12099880.26438711.53392286
Some solutions for n=6, k=8:
.-4...-4...-4...-8...-7...-6...-6...-8...-7...-8...-7...-7...-8...-8...-8...-4
.-3...-3...-3...-3....0....1....1....0...-2....0....1...-2....3...-8...-4...-4
..5...-1...-4....4...-4...-1....1....1....8....3....0....8...-4...-4....0...-2
.-2....3...-3....1....2....8....6....4...-5....5...-6....1....0....6....7....5
.-1...-1....6....3....3...-5...-6....0....5...-4....8...-7....6....7....3....7
..5....6....8....3....6....3....4....3....1....4....4....7....3....7....2...-2
		

Crossrefs

Row 3 is A074148.

Formula

Empirical for row n:
n=2: a(k) = 2*a(k-1) - a(k-2).
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = 3*a(k-1) - 3*a(k-2) + 2*a(k-3) - 3*a(k-4) + 3*a(k-5) - a(k-6).
n=5: a(k) = 2*a(k-1) + a(k-2) - 3*a(k-3) - a(k-4) + a(k-5) + 3*a(k-6) - a(k-7) - 2*a(k-8) + a(k-9).
n=6: a(k) = 4*a(k-1) - 5*a(k-2) + a(k-3) + a(k-4) + a(k-5) + a(k-6) - 5*a(k-7) + 4*a(k-8) - a(k-9).
Showing 1-10 of 43 results. Next