cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A231303 Recurrence a(n) = a(n-2) + n^M for M=4, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 16, 82, 272, 707, 1568, 3108, 5664, 9669, 15664, 24310, 36400, 52871, 74816, 103496, 140352, 187017, 245328, 317338, 405328, 511819, 639584, 791660, 971360, 1182285, 1428336, 1713726, 2042992, 2421007, 2852992, 3344528, 3901568, 4530449, 5237904
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

In physics, a(n)/2^(M-1) is the trace of the spin operator |S_z|^M for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of their 4th powers is 2*82/16 = a(3)/8 (analogously for other values of M).
Partial sums of A062392. - Bruce J. Nicholson, Jun 29 2019

Examples

			a(4) = 4^4 + 2^4 = 272; a(5) = 5^4 + 3^4 + 1^4 = 707.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • GAP
    List([0..40], n-> n*(3*n^4+15*n^3+20*n^2-8)/30); # G. C. Greubel, Jul 01 2019
  • Magma
    [1/30*n*(3*n^4+15*n^3+20*n^2-8): n in [0..40]]; // Vincenzo Librandi, Dec 23 2015
    
  • Mathematica
    Table[SeriesCoefficient[x*(1+10*x+x^2)/(1-x)^6, {x, 0, n}], {n, 0, 40}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 16, 82, 272, 707}, 40] (* Vincenzo Librandi, Dec 23 2015 *)
  • PARI
    nmax=40;a = vector(nmax);a[2]=1;for(i=3,#a,a[i]=a[i-2]+(i-1)^4); print(a);
    
  • PARI
    concat(0, Vec(x*(1+10*x+x^2)/(1-x)^6 + O(x^40))) \\ Colin Barker, Dec 22 2015
    
  • Sage
    [n*(3*n^4+15*n^3+20*n^2-8)/30 for n in (0..40)] # G. C. Greubel, Jul 01 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n - 2*k)^4.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/30)*n*(3*n^4 + 15*n^3 + 20*n^2 - 8).
G.f.: x*(1 + 10*x + x^2) / (1-x)^6.
(End)
E.g.f.: x*(30 + 210*x + 185*x^2 + 45*x^3 + 3*x^4)*exp(x)/30. - G. C. Greubel, Apr 24 2016
From Bruce J. Nicholson, Jun 29 2019: (Start)
a(n) = 12*A000389(n+3) + A000292(n);
a(n) = (12*A000579(n+4)+A000332(n+3)) - (12*A000579(n+3)+A000332(n+2));
a(n) - a(n-2) = A000583(n). (End)

A231304 Recurrence a(n) = a(n-2) + n^M for M=5, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 32, 244, 1056, 3369, 8832, 20176, 41600, 79225, 141600, 240276, 390432, 611569, 928256, 1370944, 1976832, 2790801, 3866400, 5266900, 7066400, 9351001, 12220032, 15787344, 20182656, 25552969, 32064032, 39901876, 49274400, 60413025, 73574400, 89042176
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

See A231303.

Examples

			a(4) = 4^5 + 2^5 = 1056; a(5) = 5^5 + 3^5 + 1^5 = 3369.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+n^5},a,{n,30}] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{0,1,32,244,1056,3369,8832,20176},40] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^5); print(a);
    
  • PARI
    concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/((1-x)^7*(1+x)) + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^5.
a(0)=0, a(1)=1, a(2)=32, a(3)=244, a(4)=1056, a(5)=3369, a(6)=8832, a(7)=20176, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Jul 22 2014
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/24)*(2*n^6 + 12*n^5 + 20*n^4 - 16*n^2 - 3*(-1)^n + 3).
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4) / ((1-x)^7*(1+x)).
(End)

A231305 Recurrence a(n) = a(n-2) + n^M for M=6, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 64, 730, 4160, 16355, 50816, 134004, 312960, 665445, 1312960, 2437006, 4298944, 7263815, 11828480, 18654440, 28605696, 42792009, 62617920, 89837890, 126617920, 175604011, 239997824, 323639900, 431100800, 567780525, 740016576, 955201014, 1221906880
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^6 + 3^6 + 1^6 = 16355.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Maple
    map(op,ListTools:-PartialSums([seq([(2*i)^6,(2*i+1)^6],i=0..50)])); # Robert Israel, Dec 22 2015
  • Mathematica
    Table[SeriesCoefficient[x (1 + 56 x + 246 x^2 + 56 x^3 + x^4)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,64,730,4160,16355,50816,134004},30] (* Harvey P. Dale, Aug 23 2025 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^6); print(a);
    
  • PARI
    concat(0, Vec(x*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^8 + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)}(n-2k)^6.
From Colin Barker, Dec 22 2015: (Start)
a(n) = 1/42*n*(3*n^6+21*n^5+42*n^4-56*n^2+32).
G.f.: x*(1+56*x+246*x^2+56*x^3+x^4) / (1-x)^8.
(End)

A231306 Recurrence a(n) = a(n-2) + n^M for M=7, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 128, 2188, 16512, 80313, 296448, 903856, 2393600, 5686825, 12393600, 25173996, 48225408, 87922513, 153638912, 258781888, 422074368, 669120561, 1034294400, 1562992300, 2314294400, 3364080841, 4808652288, 6768906288, 9395123712, 12872421913, 17426933888
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^7 + 3^7 + 1^7 = 80313.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Mathematica
    Table[SeriesCoefficient[x (1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/((1 - x)^9 (1 + x)), {x, 0, n}], {n, 0, 26}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{8, -27, 48, -42, 0, 42, -48, 27, -8, 1}, {0, 1, 128, 2188, 16512, 80313, 296448, 903856, 2393600, 5686825}, 30] (* Vincenzo Librandi, Dec 23 2015 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+(n+1)^7}; NestList[nxt,{1,0,1},30][[All,2]] (* Harvey P. Dale, Jun 16 2022 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^7); print(a);
    
  • PARI
    concat(0, Vec(x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/((1-x)^9*(1+x)) + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^7.
From Colin Barker, Dec 22 2015: (Start)
a(n) = 1/96*(6*n^8+48*n^7+112*n^6-224*n^4+256*n^2+51*((-1)^n-1)).
G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6) / ((1-x)^9*(1+x)).
(End)

A231307 Recurrence a(n) = a(n-2) + n^M for M=8, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 256, 6562, 65792, 397187, 1745408, 6161988, 18522624, 49208709, 118522624, 263567590, 548504320, 1079298311, 2024293376, 3642188936, 6319260672, 10617946377, 17339221248, 27601509418, 42939221248, 65424368779, 97815094784, 143735354060
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^8 + 3^8 + 1^8 = 397187.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231308 (M=9), A231309 (M=10).

Programs

  • Magma
    [1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192): n in [0..30]]; // Vincenzo Librandi, Dec 23 2015
  • Mathematica
    Table[1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192),{n,0,20}] (* Vaclav Kotesovec, Feb 14 2014 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^8); print(a);
    
  • PARI
    concat(0, Vec(x*(1+246*x+4047*x^2+11572*x^3+4047*x^4+246*x^5+x^6)/(1-x)^10 + O(x^50))) \\ Colin Barker, Dec 22 2015
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^8.
a(n) = 1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192). - Vaclav Kotesovec, Feb 14 2014
G.f.: x*(1+246*x+4047*x^2+11572*x^3+4047*x^4+246*x^5+x^6) / (1-x)^10.

A231308 Recurrence a(n) = a(n-2) + n^M for M=9, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 512, 19684, 262656, 1972809, 10340352, 42326416, 144558080, 429746905, 1144558080, 2787694596, 6304338432, 13392193969, 26965385216, 51835553344, 95684861952, 170423429841, 294044152320, 493111127620, 806044152320, 1287391174201, 2013313370112
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^9 + 3^9 + 1^9 = 1972809.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231309 (M=10).

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+n^9},a,{n,30}] (* or *)
    LinearRecurrence[{10,-44,110,-165,132,0,-132,165,-110,44,-10,1},{0,1,512,19684,262656,1972809,10340352,42326416,144558080,429746905,1144558080,2787694596},30] (* Harvey P. Dale, Apr 29 2014 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^9); print(a);
    
  • PARI
    concat(0, Vec(x*(1 +502*x +14608*x^2 +88234*x^3 +156190*x^4 +88234*x^5 +14608*x^6 +502*x^7 +x^8) / ((1 -x)^11*(1 +x)) + O(x^40))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum{k=0..floor(n/2)}(n-2k)^9.
a(0)=0, a(1)=1, a(2)=512, a(3)=19684, a(4)=262656, a(5)=1972809, a(6)=10340352, a(7)=42326416, a(8)=144558080, a(9)=429746905, a(10)=1144558080, a(11)=2787694596, a(n) = 10*a(n-1) - 44*a(n-2) + 110*a(n-3) - 165*a(n-4) + 132*a(n-5) - 132*a(n-7) + 165*a(n-8) - 110*a(n-9) + 44*a(n-10) - 10*a(n-11) + a(n-12). - Harvey P. Dale, Apr 29 2014
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/40)*(2*n^10 + 20*n^9 + 60*n^8 - 224*n^6 + 640*n^4 - 768*n^2 - 155*((-1)^n -1)).
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8) / ((1-x)^11*(1+x)). (End)

Extensions

PARI code corrected by Colin Barker, Dec 22 2015

A231309 Recurrence a(n) = a(n-2) + n^M for M=10, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1024, 59050, 1049600, 9824675, 61515776, 292299924, 1135257600, 3779084325, 11135257600, 29716508926, 73052621824, 167575000775, 362307276800, 744225391400, 1461818904576, 2760219291849, 5032286131200, 8891285549650, 15272286131200
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^10 + 3^10 + 1^10 = 9824675.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 1012 x + 46828 x^2 + 408364 x^3 + 901990 x^4 + 408364 x^5 + 46828 x^6 + 1012 x^7 + x^8)/(1 - x)^12, {x, 0, 20}], x] (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    nmax=100; a=vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^10); print(a);
    
  • PARI
    concat(0, Vec(x*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8) / (1 -x)^12 + O(x^40))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n\2)} (n-2*k)^10.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/66)*n*(3*n^10 + 33*n^9 + 110*n^8 - 528*n^6 + 2112*n^4 - 4224*n^2 + 2560).
G.f.: x*(1 + 1012*x + 46828*x^2 + 408364*x^3 + 901990*x^4 + 408364*x^5 + 46828*x^6 + 1012*x^7 + x^8) / (1-x)^12.
(End)

A254371 Sum of cubes of the first n even numbers (A016743).

Original entry on oeis.org

0, 8, 72, 288, 800, 1800, 3528, 6272, 10368, 16200, 24200, 34848, 48672, 66248, 88200, 115200, 147968, 187272, 233928, 288800, 352800, 426888, 512072, 609408, 720000, 845000, 985608, 1143072, 1318688, 1513800, 1729800, 1968128, 2230272, 2517768, 2832200, 3175200
Offset: 0

Views

Author

Luciano Ancora, Mar 16 2015

Keywords

Comments

Property: for n >= 2, each (a(n), a(n)+1, a(n)+2) is a triple of consecutive terms that are the sum of two nonzero squares; precisely: a(n) = (n*(n + 1))^2 + (n*(n + 1))^2, a(n)+1 = (n^2+2n)^2 + (n^2-1)^2 and a(n)+2 = (n^2+n+1)^2 + (n^2+n-1)^2 (see Diophante link). - Bernard Schott, Oct 05 2021

Crossrefs

Cf. A000537 (sum of first n cubes); A002593 (sum of first n odd cubes).
Cf. A060300 (2*a(n)).
First bisection of A105636; second bisection of A212892.

Programs

  • GAP
    List([0..35],n->2*(n*(n+1))^2); # Muniru A Asiru, Oct 24 2018
  • Magma
    [2*n^2*(n+1)^2: n in [0..40]]; // Bruno Berselli, Mar 23 2015
    
  • Maple
    A254371:=n->2*n^2*(n + 1)^2: seq(A254371(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[2 n^2 (n+1)^2, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 8, 72, 288, 800}, 40]
    Accumulate[Range[0,80,2]^3] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    a(n)=sum(i=0, n, 8*i^3); \\ Michael B. Porter, Mar 16 2015
    

Formula

G.f.: 8*x*(1 + 4*x + x^2)/(1 - x)^5.
a(n) = 2*n^2*(n + 1)^2.
a(n) = 2*A035287(n+1) = 2*A002378(n)^2 = 8*A000217(n)^2. - Bruce J. Nicholson, Apr 23 2017
a(n) = 8*A000537(n). - Michel Marcus, Apr 23 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/6 - 3/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - 2*log(2). (End)
From Elmo R. Oliveira, Aug 14 2025: (Start)
E.g.f.: 2*x*(2 + x)*(2 + 6*x + x^2)*exp(x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*A163102(n) = A060300(n)/2. (End)

A289706 Number of 5-cycles in the n-triangular honeycomb queen graph.

Original entry on oeis.org

0, 0, 24, 324, 1692, 5796, 15516, 35388, 71988, 134460, 234972, 389304, 617400, 943992, 1399272, 2019528, 2847960, 3935304, 5340816, 7132860, 9390084, 12201948, 15670116, 19908900, 25046892, 31227300, 38609844, 47370960, 57705984, 69829200, 83976336, 100404432
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Cf. A105636 (3-cycles), A289705 (4-cycles), A289707 (6-cycles).

Programs

  • Mathematica
    Table[(1095 - 4770 n + 934 n^2 + 4680 n^3 - 3170 n^4 + 540 n^5 +
        16 n^6 - 15 (-1)^n (73 - 30 n + 2 n^2))/320, {n, 20}]
    LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1}, {0, 0, 24, 324, 1692, 5796, 15516, 35388, 71988, 134460}, 20]
  • PARI
    concat(vector(2), Vec(12*x^3*(2 + 19*x + 39*x^2 + 16*x^3 - 28*x^4 - 24*x^5) / ((1 - x)^7*(1 + x)^3) + O(x^50))) \\ Colin Barker, Aug 07 2017

Formula

a(n) = (1095 - 4770*n + 934*n^2 + 4680*n^3 - 3170*n^4 + 540*n^5 +
16*n^6 - 15*(-1)^n (73 - 30*n + 2*n^2))/320.
a(n) = 4*a(n-1) - 3*a(n-2) - 8*a(n-3) + 14*a(n-4) - 14*a(n-6) + 8*a(n-7) + 3*a(n-8) - 4*a(n-9) + a(n-10).
G.f.: 12*x^3*(2 + 19*x + 39*x^2 + 16*x^3 - 28*x^4 - 24*x^5) / ((1 - x)^7*(1 + x)^3). - Colin Barker, Aug 07 2017

A289707 Number of 6-cycles in the n-triangular honeycomb queen graph.

Original entry on oeis.org

0, 0, 16, 911, 8013, 38130, 129932, 358272, 851710, 1815124, 3554910, 6510729, 11289019, 18704640, 29823436, 46014402, 69002190, 100930284, 144424446, 202667301, 279473821, 379377584, 507719550, 670746120, 875712560, 1130992902, 1446199474, 1832304547, 2301777585, 2868718404
Offset: 1

Views

Author

Eric W. Weisstein, Jul 14 2017

Keywords

Crossrefs

Cf. A105636 (3-cycles), A289705 (4-cycles), A289706 (5-cycles).

Programs

  • Mathematica
    Table[(-315 (-1)^n (-2489 + 1659 n - 297 n^2 + 10 n^3) - 792995 + 3789081 n - 1968939 n^2 - 3033450 n^3 + 3489990 n^4 - 1269366 n^5 + 154014 n^6 + 1440 n^7 + 8960 Cos[2 n Pi/3] - 8960 Sqrt[3] Sin[2 n Pi/3])/40320, {n, 20}]
    LinearRecurrence[{3, 1, -10, 3, 13, -3, -12, -3, 13, 3, -10, 1, 3, -1}, {0, 0, 16, 911, 8013, 38130, 129932, 358272, 851710, 1815124, 3554910, 6510729, 11289019, 18704640}, 20]
  • PARI
    concat(vector(2), Vec(x^3*(16 + 863*x + 5264*x^2 + 13340*x^3 + 16591*x^4 + 7535*x^5 - 7572*x^6 - 14592*x^7 - 9919*x^8 - 2886*x^9) / ((1 - x)^8*(1 + x)^4*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Jul 27 2017

Formula

a(n) = 3*a(n-1)+a(n-2)-10*a(n-3)+3*a(n-4)+13*a(n-5)-3*a(n-6)-12*a(n-7)-3*a(n-8)+13*a(n-9)+3*a(n-10)-10*a(n-11)+a(n-12)+3*a(n-13)-a(n-14).
G.f.: x^3*(16 + 863*x + 5264*x^2 + 13340*x^3 + 16591*x^4 + 7535*x^5 - 7572*x^6 - 14592*x^7 - 9919*x^8 - 2886*x^9) / ((1 - x)^8*(1 + x)^4*(1 + x + x^2)). - Colin Barker, Jul 27 2017
Showing 1-10 of 12 results. Next