cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A231303 Recurrence a(n) = a(n-2) + n^M for M=4, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 16, 82, 272, 707, 1568, 3108, 5664, 9669, 15664, 24310, 36400, 52871, 74816, 103496, 140352, 187017, 245328, 317338, 405328, 511819, 639584, 791660, 971360, 1182285, 1428336, 1713726, 2042992, 2421007, 2852992, 3344528, 3901568, 4530449, 5237904
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

In physics, a(n)/2^(M-1) is the trace of the spin operator |S_z|^M for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of their 4th powers is 2*82/16 = a(3)/8 (analogously for other values of M).
Partial sums of A062392. - Bruce J. Nicholson, Jun 29 2019

Examples

			a(4) = 4^4 + 2^4 = 272; a(5) = 5^4 + 3^4 + 1^4 = 707.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • GAP
    List([0..40], n-> n*(3*n^4+15*n^3+20*n^2-8)/30); # G. C. Greubel, Jul 01 2019
  • Magma
    [1/30*n*(3*n^4+15*n^3+20*n^2-8): n in [0..40]]; // Vincenzo Librandi, Dec 23 2015
    
  • Mathematica
    Table[SeriesCoefficient[x*(1+10*x+x^2)/(1-x)^6, {x, 0, n}], {n, 0, 40}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 16, 82, 272, 707}, 40] (* Vincenzo Librandi, Dec 23 2015 *)
  • PARI
    nmax=40;a = vector(nmax);a[2]=1;for(i=3,#a,a[i]=a[i-2]+(i-1)^4); print(a);
    
  • PARI
    concat(0, Vec(x*(1+10*x+x^2)/(1-x)^6 + O(x^40))) \\ Colin Barker, Dec 22 2015
    
  • Sage
    [n*(3*n^4+15*n^3+20*n^2-8)/30 for n in (0..40)] # G. C. Greubel, Jul 01 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n - 2*k)^4.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/30)*n*(3*n^4 + 15*n^3 + 20*n^2 - 8).
G.f.: x*(1 + 10*x + x^2) / (1-x)^6.
(End)
E.g.f.: x*(30 + 210*x + 185*x^2 + 45*x^3 + 3*x^4)*exp(x)/30. - G. C. Greubel, Apr 24 2016
From Bruce J. Nicholson, Jun 29 2019: (Start)
a(n) = 12*A000389(n+3) + A000292(n);
a(n) = (12*A000579(n+4)+A000332(n+3)) - (12*A000579(n+3)+A000332(n+2));
a(n) - a(n-2) = A000583(n). (End)

A231304 Recurrence a(n) = a(n-2) + n^M for M=5, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 32, 244, 1056, 3369, 8832, 20176, 41600, 79225, 141600, 240276, 390432, 611569, 928256, 1370944, 1976832, 2790801, 3866400, 5266900, 7066400, 9351001, 12220032, 15787344, 20182656, 25552969, 32064032, 39901876, 49274400, 60413025, 73574400, 89042176
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

See A231303.

Examples

			a(4) = 4^5 + 2^5 = 1056; a(5) = 5^5 + 3^5 + 1^5 = 3369.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-2]+n^5},a,{n,30}] (* or *) LinearRecurrence[{6,-14,14,0,-14,14,-6,1},{0,1,32,244,1056,3369,8832,20176},40] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^5); print(a);
    
  • PARI
    concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/((1-x)^7*(1+x)) + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^5.
a(0)=0, a(1)=1, a(2)=32, a(3)=244, a(4)=1056, a(5)=3369, a(6)=8832, a(7)=20176, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Jul 22 2014
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/24)*(2*n^6 + 12*n^5 + 20*n^4 - 16*n^2 - 3*(-1)^n + 3).
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4) / ((1-x)^7*(1+x)).
(End)

A231305 Recurrence a(n) = a(n-2) + n^M for M=6, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 64, 730, 4160, 16355, 50816, 134004, 312960, 665445, 1312960, 2437006, 4298944, 7263815, 11828480, 18654440, 28605696, 42792009, 62617920, 89837890, 126617920, 175604011, 239997824, 323639900, 431100800, 567780525, 740016576, 955201014, 1221906880
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^6 + 3^6 + 1^6 = 16355.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Maple
    map(op,ListTools:-PartialSums([seq([(2*i)^6,(2*i+1)^6],i=0..50)])); # Robert Israel, Dec 22 2015
  • Mathematica
    Table[SeriesCoefficient[x (1 + 56 x + 246 x^2 + 56 x^3 + x^4)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,1,64,730,4160,16355,50816,134004},30] (* Harvey P. Dale, Aug 23 2025 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^6); print(a);
    
  • PARI
    concat(0, Vec(x*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^8 + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)}(n-2k)^6.
From Colin Barker, Dec 22 2015: (Start)
a(n) = 1/42*n*(3*n^6+21*n^5+42*n^4-56*n^2+32).
G.f.: x*(1+56*x+246*x^2+56*x^3+x^4) / (1-x)^8.
(End)

A231306 Recurrence a(n) = a(n-2) + n^M for M=7, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 128, 2188, 16512, 80313, 296448, 903856, 2393600, 5686825, 12393600, 25173996, 48225408, 87922513, 153638912, 258781888, 422074368, 669120561, 1034294400, 1562992300, 2314294400, 3364080841, 4808652288, 6768906288, 9395123712, 12872421913, 17426933888
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^7 + 3^7 + 1^7 = 80313.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • Mathematica
    Table[SeriesCoefficient[x (1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/((1 - x)^9 (1 + x)), {x, 0, n}], {n, 0, 26}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{8, -27, 48, -42, 0, 42, -48, 27, -8, 1}, {0, 1, 128, 2188, 16512, 80313, 296448, 903856, 2393600, 5686825}, 30] (* Vincenzo Librandi, Dec 23 2015 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+(n+1)^7}; NestList[nxt,{1,0,1},30][[All,2]] (* Harvey P. Dale, Jun 16 2022 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^7); print(a);
    
  • PARI
    concat(0, Vec(x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/((1-x)^9*(1+x)) + O(x^50))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^7.
From Colin Barker, Dec 22 2015: (Start)
a(n) = 1/96*(6*n^8+48*n^7+112*n^6-224*n^4+256*n^2+51*((-1)^n-1)).
G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6) / ((1-x)^9*(1+x)).
(End)

A231307 Recurrence a(n) = a(n-2) + n^M for M=8, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 256, 6562, 65792, 397187, 1745408, 6161988, 18522624, 49208709, 118522624, 263567590, 548504320, 1079298311, 2024293376, 3642188936, 6319260672, 10617946377, 17339221248, 27601509418, 42939221248, 65424368779, 97815094784, 143735354060
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^8 + 3^8 + 1^8 = 397187.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231308 (M=9), A231309 (M=10).

Programs

  • Magma
    [1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192): n in [0..30]]; // Vincenzo Librandi, Dec 23 2015
  • Mathematica
    Table[1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192),{n,0,20}] (* Vaclav Kotesovec, Feb 14 2014 *)
  • PARI
    nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^8); print(a);
    
  • PARI
    concat(0, Vec(x*(1+246*x+4047*x^2+11572*x^3+4047*x^4+246*x^5+x^6)/(1-x)^10 + O(x^50))) \\ Colin Barker, Dec 22 2015
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2k)^8.
a(n) = 1/90*n*(n+1)*(n+2)*(5*n^6+30*n^5+20*n^4-120*n^3-16*n^2+288*n-192). - Vaclav Kotesovec, Feb 14 2014
G.f.: x*(1+246*x+4047*x^2+11572*x^3+4047*x^4+246*x^5+x^6) / (1-x)^10.

A231309 Recurrence a(n) = a(n-2) + n^M for M=10, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1024, 59050, 1049600, 9824675, 61515776, 292299924, 1135257600, 3779084325, 11135257600, 29716508926, 73052621824, 167575000775, 362307276800, 744225391400, 1461818904576, 2760219291849, 5032286131200, 8891285549650, 15272286131200
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Examples

			a(5) = 5^10 + 3^10 + 1^10 = 9824675.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231303 (M=4), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9).

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 1012 x + 46828 x^2 + 408364 x^3 + 901990 x^4 + 408364 x^5 + 46828 x^6 + 1012 x^7 + x^8)/(1 - x)^12, {x, 0, 20}], x] (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    nmax=100; a=vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^10); print(a);
    
  • PARI
    concat(0, Vec(x*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8) / (1 -x)^12 + O(x^40))) \\ Colin Barker, Dec 22 2015

Formula

a(n) = Sum_{k=0..floor(n\2)} (n-2*k)^10.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/66)*n*(3*n^10 + 33*n^9 + 110*n^8 - 528*n^6 + 2112*n^4 - 4224*n^2 + 2560).
G.f.: x*(1 + 1012*x + 46828*x^2 + 408364*x^3 + 901990*x^4 + 408364*x^5 + 46828*x^6 + 1012*x^7 + x^8) / (1-x)^12.
(End)
Showing 1-6 of 6 results.