cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A209345 Number of 4-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

4, 15, 35, 72, 128, 205, 311, 448, 618, 829, 1083, 1382, 1734, 2141, 2605, 3134, 3730, 4395, 5137, 5958, 6860, 7851, 8933, 10108, 11384, 12763, 14247, 15844, 17556, 19385, 21339, 23420, 25630, 27977, 30463, 33090, 35866, 38793, 41873, 45114, 48518, 52087
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 4 of A209344.

Examples

			Some solutions for n=10:
  -5  -5  -9  -5  -7  -2  -9 -10  -9  -4  -7 -10  -4  -6  -7  -7
   1  -3   5   0   1  -1   5   5  -4   1  -1  -3  -4   1   7  -6
  -3  -2  -5   4   4   4  -6  -3   3   0   6  10   3  -2  -7  10
   7  10   9   1   2  -1  10   8  10   3   2   3   5   7   7   3
		

Crossrefs

Cf. A209344.

Formula

Empirical: a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
Empirical g.f.: x*(4 + 3*x + 2*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x + x^2)). - Colin Barker, Mar 07 2018

A209339 Number of n-bead necklaces labeled with numbers -3..3 allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 4, 7, 35, 145, 770, 4029, 22739, 130282, 766177, 4566523, 27587850, 168340643, 1036444786, 6429150260, 40144480583
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 3 of A209344.

Examples

			Some solutions for n=8:
.-3...-3...-3...-3...-3...-3...-2...-3...-3...-3...-3...-3...-3...-3...-3...-3
..1....0...-2...-2....0....1....0....0...-1...-2...-1...-2....0....0...-2...-2
.-2...-1....1....1....0....1....2...-1...-2....2....0....2...-1....0...-2....0
..1....3....2....1...-3...-2...-1...-1....2....1....3....3...-2...-1....3....0
..0....0....2....0....1...-2....0....1....2....3....1....2....1....2....2....2
.-2....3...-2...-3....0....2....1...-2....0...-3...-2...-3....2....0....1...-1
..3...-3...-1....3....2....1...-2....3....0...-1....3....2....0....1....0....2
..2....1....3....3....3....2....2....3....2....3...-1...-1....3....1....1....2
		

Crossrefs

Cf. A209344.

A209346 Number of 5-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

5, 40, 145, 400, 883, 1724, 3045, 5026, 7827, 11684, 16795, 23446, 31879, 42430, 55379, 71118, 89965, 112362, 138671, 169384, 204901, 245770, 292429, 345476, 405393, 472828, 548301, 632516, 726031, 829600, 943825, 1069510, 1207295
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 5 of A209344.

Examples

			Some solutions for n=10:
  -9  -7 -10  -5 -10 -10  -8  -7  -8  -7  -9  -7  -4  -6 -10  -8
   5   4  -4  -1  -4  -5  -7  -3   1   0  -4   2  -2   1  -4  -3
   7  -3  -5   3   4  -1   8  -3   6  -1   9  -3  -2   4  10   8
  -9  -1  10   3   5  10   3   3  -1   3   3   2  10  -2   6   1
   6   7   9   0   5   6   4  10   2   5   1   6  -2   3  -2   2
		

Crossrefs

Cf. A209344.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9).
Empirical g.f.: x*(5 + 30*x + 60*x^2 + 85*x^3 + 63*x^4 + 28*x^5 + 4*x^6 + x^7) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jul 09 2018

A209347 Number of 6-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

14, 146, 770, 2698, 7358, 16968, 34720, 64942, 113288, 186906, 294616, 447084, 657006, 939270, 1311146, 1792454, 2405742, 3176460, 4133144, 5307578, 6734984, 8454190, 10507808, 12942408, 15808702, 19161706, 23060930, 27570546, 32759566
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 6 of A209344.

Examples

			Some solutions for n=8:
  -5  -8  -6  -2  -4  -6  -6  -3  -3  -8  -8  -6  -5  -4  -5  -8
  -4   1  -1  -2  -1  -5  -3  -1  -1   0  -3  -1   1  -2   2  -7
  -2  -2   4   0   5  -2   5   1   2  -4   7   1  -2   1   4   8
   4   3  -4   0  -4   2   5   2  -3  -2   3   3  -3   2   0   6
   7   1  -1   1   4   3  -5  -3   1   7  -7  -3   7   3  -4   3
   0   5   8   3   0   8   4   4   4   7   8   6   2   0   3  -2
		

Crossrefs

Cf. A209344.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6) - 5*a(n-7) + 4*a(n-8) - a(n-9).
Empirical g.f.: 2*x*(7 + 45*x + 128*x^2 + 167*x^3 + 128*x^4 + 48*x^5 + 5*x^6) / ((1 - x)^6*(1 + x)*(1 + x + x^2)). - Colin Barker, Jul 09 2018

A209348 Number of 7-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

21, 514, 4029, 18646, 62853, 172610, 409199, 870122, 1699831, 3104474, 5365417, 8858142, 14068115, 21614144, 32266607, 46975088, 66888951, 93389664, 128113109, 172986976, 230254897, 302518564, 392763779, 504407780, 641326401, 807907094
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Row 7 of A209344.

Examples

			Some solutions for n=5:
  -5  -4  -4  -5  -5  -4  -4  -3  -2  -2  -4  -4  -5  -5  -5  -4
  -5  -3   0  -4   0  -2  -3  -1  -1  -1  -3  -2  -2  -4  -3   1
  -1   5  -4   2   0  -2   1  -2  -1  -2   4   3  -1   0   5  -3
   5   5   1   2   5   0   1   2   1  -1   1   3   5   4   2  -2
  -4  -3   2   1  -1   2   5   2  -1   3   5  -4   3   2  -2   1
   5  -1   3  -1  -4   1   2   0   3   3  -4   0  -2   1   0   2
   5   1   2   5   5   5  -2   2   1   0   1   4   2   2   3   5
		

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) - 2*a(n-5) + 5*a(n-6) - 5*a(n-7) + 3*a(n-8) - 3*a(n-10) + 5*a(n-11) - 5*a(n-12) + 2*a(n-13) - a(n-14) + a(n-15) + 2*a(n-16) - 3*a(n-17) + a(n-18).

A209336 Number of n-bead necklaces labeled with numbers -n..n allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 3, 7, 72, 883, 16968, 409199, 12099880, 420661470, 16838275108, 762821788869
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Diagonal of A209344.

Examples

			Some solutions for n=6:
.-4...-5...-6...-4...-6...-5...-5...-5...-5...-5...-3...-5...-5...-6...-6...-5
.-3...-4....5....2...-4....3....3....0...-4....0...-2...-3....1...-3....0....0
..6....5...-4....3....6...-3...-1....2...-4...-3...-1....1....2....2....3....0
..0....0...-5...-3....3....0...-3...-2....6....3....0...-2...-4....1....3...-1
..0....2....4...-1....1....1....2...-1....4....0....5....5....0....0...-4....1
..1....2....6....3....0....4....4....6....3....5....1....4....6....6....4....5
		

A209337 Number of n-bead necklaces labeled with numbers -1..1 allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 2, 1, 4, 5, 14, 21, 51, 102, 249, 555, 1358, 3201, 7890, 19232, 47869, 118955, 298875, 752039, 1904621, 4835666, 12330144, 31521037, 80836979, 207803455, 535535393, 1383064966, 3579351724, 9280561947
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 1 of A209344.

Examples

			Some solutions for n=10:
.-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1...-1
..0....0...-1....0...-1....0....0....0....0...-1....0....0....0....0....0....0
.-1....0....0....0....0....0....0...-1...-1....0...-1....0....0...-1....1...-1
..0...-1....0....1...-1...-1...-1....0....0...-1....1...-1....1....1....0....0
..0....0...-1....0....1....0....1....1....1....1....1....0...-1...-1...-1....0
..1....1....0...-1....0....0...-1...-1...-1....1...-1....1....1....1....1....1
..1....0....1....1....1....1....1....1....1...-1....0...-1....0....0...-1....0
..0....1....0...-1....0....0....0....0...-1....1...-1....0....0....1....1....1
.-1...-1....1....1....1....0....0....0....1....0....1....1...-1...-1...-1....0
..1....1....1....0....0....1....1....1....1....1....1....1....1....1....1....0
		

A209338 Number of n-bead necklaces labeled with numbers -2..2 allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 3, 4, 15, 40, 146, 514, 2032, 8076, 33310, 138966, 589618, 2525494, 10923868, 47599638, 208824200, 921391230, 4086463748, 18206487792
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 2 of A209344.

Examples

			Some solutions for n=10:
.-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2...-2
.-1...-2...-2...-1...-2...-1...-2...-1....0...-1....0...-1...-2...-1....0...-1
.-2....2....0...-1....1...-1....2....0....1...-1....1....0....1...-2....0...-1
.-1...-2....0....1....0....1...-2...-1....0....1....0....2....2....0...-1....1
..0...-1...-1....2...-1....1....1....0....2....2...-2....0....1....2....2....2
..2....0....1....1....2....0....2....2....0....0....1...-1....2....1...-2....2
..1....2....2....0...-1....0....0...-1...-1....0...-2....0...-2....1....0....0
..1...-1...-1....1....0....2...-2....1....1...-2....1....2...-1...-1....0...-1
..0....2....2....0....1...-2....1....2...-2....1....1...-1...-1....0....1...-2
..2....2....1...-1....2....2....2....0....1....2....2....1....2....2....2....2
		

A209340 Number of n-bead necklaces labeled with numbers -4..4 allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 5, 12, 72, 400, 2698, 18646, 136000, 1013342, 7713270, 59569974, 465894736, 3681136600, 29342106638
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 4 of A209344.

Examples

			Some solutions for n=7:
.-3...-3...-4...-4...-4...-4...-3...-4...-4...-3...-3...-4...-4...-3...-4...-4
.-3...-2....0...-2....1...-2....1...-1...-3...-1....2....1....3...-1...-3....2
..2....1....2....0...-2....0....0....3....3....4....3....3...-2...-2....1...-1
..4....0....2...-1...-3....1...-1....1....2...-1...-1...-3....1...-1....3....4
.-3....2....3....1....3....2....2...-3...-4....2...-2....4....1....0....1...-2
..0....3...-4....2....2....3...-3....3....3...-1...-2...-4...-2....4....3...-2
..3...-1....1....4....3....0....4....1....3....0....3....3....3....3...-1....3
		

A209341 Number of n-bead necklaces labeled with numbers -5..5 allowing reversal, with sum zero with no three beads in a row equal.

Original entry on oeis.org

1, 6, 17, 128, 883, 7358, 62853, 563109, 5153746, 48127107, 456011561, 4374662802, 42398844001
Offset: 1

Views

Author

R. H. Hardin, Mar 06 2012

Keywords

Comments

Column 5 of A209344.

Examples

			Some solutions for n=7:
.-4...-5...-5...-5...-3...-3...-5...-4...-3...-5...-3...-4...-4...-5...-4...-3
.-3....1...-4....2...-2....0....0...-1....1....3...-1...-1...-2...-2...-2...-2
..1....3....0....2....0....3...-3....2....2....0....5....5....1....1....5....0
..4....1....5...-3....2...-1....5....0...-2...-2...-2...-3....2....0...-4....5
.-3...-2....4...-2....0...-1....4....2...-2...-2....1...-3....0....5....0...-3
..4...-1...-1....2....0...-2...-5...-1....0....2...-2....1...-1...-3....1....3
..1....3....1....4....3....4....4....2....4....4....2....5....4....4....4....0
		
Showing 1-10 of 12 results. Next