cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A209485 T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero and avoiding the patterns z z+1 z+2 and z z-1 z-2.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 4, 4, 1, 5, 7, 15, 4, 1, 6, 12, 35, 38, 11, 1, 7, 17, 72, 140, 136, 15, 1, 8, 24, 128, 390, 731, 458, 43, 1, 9, 31, 205, 866, 2606, 3740, 1781, 77, 1, 10, 40, 311, 1702, 7179, 17771, 20888, 6912, 199, 1, 11, 49, 448, 3014, 16660, 60778, 128598, 118137
Offset: 1

Views

Author

R. H. Hardin, Mar 09 2012

Keywords

Comments

Table starts
..1....1.....1......1......1.......1.......1........1........1........1.......1
..2....3.....4......5......6.......7.......8........9.......10.......11......12
..1....4.....7.....12.....17......24......31.......40.......49.......60......71
..4...15....35.....72....128.....205.....311......448......618......829....1083
..4...38...140....390....866....1702....3014.....4984.....7774....11620...16716
.11..136...731...2606...7179...16660...34233....64220...112263...185506..292759
.15..458..3740..17771..60778..168453..401634...857433..1679810..3074315.5321674
.43.1781.20888.128598.541494.1778878.4907310.11891268.26069478.52776268

Examples

			Some solutions for n=6, k=6:
.-5...-4...-5...-6...-6...-5...-6...-4...-3...-6...-6...-3...-5...-5...-6...-4
..0....0...-2...-3...-2...-4...-5...-3...-1....5....2...-2....0....2...-2....2
.-2...-2....2....4....0...-1....4....0...-1...-5....0...-2...-3...-4....6...-4
..2....2...-2....3....1....5....3....4....1....0...-4....5....2....1...-4....4
..5....0....5...-2....1....0....4....3...-2....0....6....0....5....0....0...-4
..0....4....2....4....6....5....0....0....6....6....2....2....1....6....6....6
		

Crossrefs

Row 3 is A074148.
Row 4 is A209345.

Formula

Empirical for row n:
n=2: a(k) = 2*a(k-1) - a(k-2).
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = 3*a(k-1) - 3*a(k-2) + 2*a(k-3) - 3*a(k-4) + 3*a(k-5) - a(k-6).
n=5: a(k) = 2*a(k-1) - a(k-3) - 2*a(k-5) + 2*a(k-6) + a(k-8) - 2*a(k-10) + a(k-11).
n=6: a(k) = 5*a(k-1) - 10*a(k-2) + 11*a(k-3) - 10*a(k-4) + 11*a(k-5) - 10*a(k-6) + 5*a(k-7) - a(k-8) for k > 9.
Showing 1-1 of 1 results.