A377929 Quasi-practical numbers: positive integers m such that every k <= sigma(m)-m is a sum of distinct proper divisors of m.
1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 28, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 47, 48, 53, 54, 56, 59, 60, 61, 64, 66, 67, 71, 72, 73, 78, 79, 80, 83, 84, 88, 89, 90, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 120, 126, 127, 128
Offset: 1
Links
- Andrzej Kukla, Table of n, a(n) for n = 1..10000
- K. P. S. Bhaskara Rao and Yuejian Peng, On Zumkeller numbers, Journal of Number Theory, Volume 133, Issue 4, April 2013, pp. 1135-1155.
- Andrzej Kukla and Piotr Miska, On practical sets and A-practical numbers, arXiv:2405.18225 [math.NT], 2024.
Crossrefs
Programs
-
Mathematica
QuasiPracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]] || PrimeQ[n]]; Select[Range[200], QuasiPracticalQ] (* Created based on code by T. D. Noe, Apr 02 2010 *)
Comments