cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345406 Integers k such that k = d1^(c) + d2^(c) + ... + dc^(c), where d^(c) denotes the rising factorial of d, c is the length of k and di is the i-th digit of k in base 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 90, 744, 840
Offset: 1

Views

Author

Andrzej Kukla, Jun 18 2021

Keywords

Comments

The rising factorial d^(c) is defined as d*(d+1)*(d+2)*...*(d+c-1).

Examples

			7^(3) + 4^(3) + 4^(3) = 7*8*9 + 4*5*6 + 4*5*6 = 504 + 120 + 120 = 744, therefore 744 is in the list.
		

Crossrefs

Cf. A014080 (factorions), A265609 (rising factorials), A345405.

Programs

  • Mathematica
    q[n_] := Module[{dig = IntegerDigits[n], nd}, nd = Length[dig]; Sum[(d + nd - 1)!/(d - 1)!, {d, dig}] == n]; Select[Range[0, 1000], q] (* Amiram Eldar, Jun 18 2021 *)
Showing 1-1 of 1 results.